Abaris Training
Published

Hypersonix receives CMC scramjet manufacturing demonstrator

HTCMC component demonstrates manufacturing of future Spartan scramjet engine required for reusable hypersonic vehicles capable of up to Mach 12 flight. 

Share

Hypersonix has developed the DART AE hypersonic vehicle (top) as a single-use testbed using its patented Scramjet engine (center), for which it has received a high-temperature CMC demonstrator combustion chamber (bottom). Photo Credit: Hypersonix

Hypersonix (Sydney, Australia) has taken delivery of a technology demonstrator version of its hydrogen-powered Spartan scramjet engine  manufactured in high-temperature ceramic matrix composite (HTCMC) from a leading European aerospace manufacturer. HTCMC parts are capable of resisting repeated cycles of extreme heating and cooling, which makes them a material of choice for Hypersonix’ planned re-useable hypersonic vehicles.

DART AE and Spartan scramjet

Hypersonix is currently building Dart AE, an unmanned hypersonic flight demonstrator as a test vehicle designed to enable customers to investigate flight conditions, data transmission and maneuverability at hypersonic speeds. Dart AE will reportedly also be able to gain valuable data and insights on hypersonic operations at a much more affordable price than is currently available from other hypersonic programs. The single-use Dart AE will be 3D printed out of high-temperature alloys, enabling quick turnaround between flights and a high cadence of testing as well as rapid availability of additional units.

The demonstrator is powered by the multi-award-winning and U.S. patented  Spartan scramjet engine, which is now available in 3D-printed Inconel 718 in cooperation with Amiga Engineering (Tullamarine, Australia). This version of Spartan is capable of speeds of up to Mach 7. 

HTCMC demonstrator

The high heat generated by friction with air when traveling at speeds of Mach 5 or higher can compromise the structural integrity of hypersonic vehicle components. Hypersonix’ HTCMC technology demonstrator project has reportedly perfected the design and techniques required to offer a version of Spartan that can operate at up to Mach 12 and sustain repeated flights.

Customers are now expressing a need for such a vehicle, that is re-useable, with aircraft-like operation, including landing gear and flexible launch options. Hypersonix’ mission is indeed to enable affordable, sustainable access to space and greener aerospace technologies. The completion of the manufacturing pilot of a HTCMC scramjet is a major development for the company.

HTCMC are next-generation composites developed to handle the extreme heat and mechanical pressures required for a high Mach flight. Qualification of these materials for hypersonic applications requires manufacturing demonstrators that replicate the complex geometry of scramjets. These allow the analysis of hydrogen and air flows within the engine yet can be produced rapidly and economically.

A Spartan scramjet engine made using HTCMC will fly faster on longer missions, turning the self-igniting engine off and on again several times during the flight and skipping through the atmosphere like an airplane.

Michael Smart, CTO, head of R&D and Hypersonix cofounder says it was a huge moment for the engineering team to unpack this demonstrator for the composite version of Spartan. Designed by Hypersonix, he explains the demonstrator component was “produced in a very complex and never-done-before process working very closely over the last 2 years with a team of experts in Germany. We have been grateful for their willingness to take this project on and for bringing their expertise and input to the table.”

“Although we are focusing most of our energy this year on setting up our Dart AE manufacturing capacity, Hypersonix is already working on the next steps in our product roadmap,” says David Waterhouse, managing director of Hypersonix, “and taking the composite scramjet to a manufacturing-ready state. Australia is leading the world in scramjets and hypersonic technology; Hypersonix is looking to capitalize on our position, with the support of Commonwealth grants. HTCMC technology is in its infancy in Australia, so we are working with various parties to speed up applications, and would welcome orders from Australia and state government’s support in maturing and making HTCMC products here.”

Adhesives for Composite Materials
De-Comp Composite Materials and Supplies
Abaris Training
Co-Cured Wing Structure
expanded metal foils and polymers
pro-set epoxy laminate infusion tool assembly
Park Aerospace Corp.
Wickert Hydraulic Presses
Composites One
Janicki employees laying up a carbon fiber part
re-engineered the ORPC foil and strut
Kennametal Composite Material Tooling Solutions

Related Content

Mass Transit

Materials & Processes: Fibers for composites

The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

Read More
Thermoplastics

Materials & Processes: Resin matrices for composites

The matrix binds the fiber reinforcement, gives the composite component its shape and determines its surface quality. A composite matrix may be a polymer, ceramic, metal or carbon. Here’s a guide to selection.

Read More
Defense

TenCate Advanced Armour renamed to Integris Composites

With its rebranding, Integris maintains the ability to develop, test and manufacture ballistic armor and survivability solutions while expanding into new markets where composite solutions can be advantageous.

Read More
Carbon Fibers

Plant tour: National Institute for Aviation Research, Wichita, Kan., U.S.

NIAR, located at Wichita State University in the heart of the American aerospace manufacturing industry, has evolved to become a premier hub of teaching, R&D, creativity and innovation.

Read More

Read Next

Aerospace

Purdue opens $41 million Hypersonics and Applied Research Facility

A dedicated 65,000-square-foot building is home to Mach 8 and HYPULSE wind tunnels to advance hypersonic evaluation and testing, and the HAMTC for materials and manufacturing work with partners.

Read More
Aerospace

Stratolaunch completes separation test of Talon-A hypersonic vehicle

Stratolaunch takes one step closer to hypersonic flight with the demo of a clean and safe separation of its Talon-A vehicle from the Roc aircraft platform.

Read More
Aerospace

NCC successfully demonstrates AFP manufacture of CMC parts

Core Research program adapts existing AFP technology and identifies optimal deposition parameters using a novel 3M towpreg material for wider CMC use.  

Read More
Abaris Training