Building retrofitted with carbon fiber can survive simulated earthquake
Turkish researchers successfully demonstrated that carbon fiber-based material could prevent the collapse of thousands of buildings during a future major quake.
A team of structural experts from the industry and universities in Turkey have demonstrated in a side-by-side test how a building retrofitted with carbon fiber composites can successfully survive a simulated earthquake. DowAksa, a joint venture between Aksa (Istanbul, Turkey), the world’s leading provider of acrylic fiber, and The Dow Chemical Co. (Midland, Mich.) joined with Istanbul Technical University to conduct a simultaneous full-scale earthquake simulation at a site in Yalova using DowAksa’s carbon fiber reinforced polymer (CFRP) technology. The testing site is near the epicenter of one of Turkey’s deadliest earthquake disasters that in 1999 cost more than 18,000 lives. The team of experts say they were very satisfied by the ability of the upgraded structure to withstand a simulated severe seismic shock, and will review detailed data collected during the test to improve survivability and limit property damage in future earthquakes.
Over the past year, DowAksa constructed two full-scale buildings on land allocated by the Yalova Governor’s Office. Using the same foundation and materials, both buildings were constructed using practices that were common for several decades in Turkish construction, prior to implementation of new requirements under the Earthquake Regulations of 2007. The first building was retrofitted with CFRP and the second building was not changed. The experiment’s goal was to demonstrate how a conventional building can be retrofitted to withstand strong seismic forces.
After several days of final site preparations which included extensive placement of advanced sensors, the test was completed under the supervision of professor Alper İlki from Istanbul Technical University using a system of hydraulic actuators to simulate a seismic shock. This is reportedly the first test in the world of its type to simulate seismic forces on two 3-story structures. According to Professor İlki: “Into my best knowledge, this is one of the largest and exemplary collaborations of industry, academia and the local government in the field of structural and earthquake engineering in Turkey.”
Yalova Deputy Governor Yıldırım Uçar, Mayor of Yalova Municipality Vefa Salman, ITU Professor Mehmet Karaca, AFAD officers and the senior management of DowAksa were on site to witness the final seismic simulation. DowAksa Board Chairman Mehmet Ali Berkman welcomed the other witnesses to the site and thanked Yalova Governorate for their office’s cooperation in providing the test site in Yalova:
“Exactly 17 years, 3 months, 6 days ago, this region we are in now witnessed one of the biggest earthquakes of the last century. Although a long time has passed since that day, many of us remember it like it was yesterday. 18,373 people died, 2,504 of which were from this region of Yalova. 96,796 houses and 15,939 businesses were destroyed. The reason I’m telling all this is to specify the meaning of realizing this project here in Yalova as DowAksa. Yalova where most of our colleagues and their families live. That’s why I would like to express my gratitude to our governor for providing this site to us for the test.”
Berkman added, “Across the globe, aging infrastructure is a growing concern – threatening public safety, causing major disruptions and draining economies. Finding long-lasting and efficient ways to repair buildings, pipelines, roads and bridges is a challenge. We hope that the test we will realize here today to showcase the strength of our product will be a stepping stone in finding a solution to this problem.”
Related Content
McLaren celebrates 10 years of the McLaren P1 hybrid hypercar
Lightweight carbon fiber construction, Formula 1-inspired aerodynamics and high-performance hybrid powertrain technologies hallmark this hybrid vehicle, serve as a springboard for new race cars.
Read MorePlant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.
In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.
Read MoreCryo-compressed hydrogen, the best solution for storage and refueling stations?
Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.
Read MoreTU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage
Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.
Read MoreRead Next
“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read MoreCFRP planing head: 50% less mass, 1.5 times faster rotation
Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.
Read MoreVIDEO: High-rate composites production for aerospace
Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.
Read More