Airtech
Published

AIM3D multi-material 3D printer targets precise, cost-effective polymer processing

Extrusion 3D printer offers considerably faster build rates and can print up to three different materials in parallel for metals, ceramics and high-temperature plastics such as PEEK and PPS with or without fiber filling.

Share

ExAM 510 multi-material printer.

ExAM 510 multi-material printer. Photo Credit, all images: AIM3D GmbH

AIM3D (Rostock, Germany), a manufacturer of multi-material 3D printers, has developed a 3D printer for the composite extrusion modeling (CEM) process, which combines metal injection molding with additive manufacturing (AM). The ExAM 510 boasts a larger build area, higher precision and faster build rates, AIM3D says, and is a multi-material printer for AM that can print up to three different materials in parallel, including pellet-based processing of high-performance plastics such as PEEK and PPS. ExAM 510 is planned to be ready for series production in time for Formnext 2022, according to the manufacturer.

The latest addition to Rostock’s product lineup, the ExAM 510 is a performance-enhanced version of the previous ExAM 255. It can process up to three materials; this allows for two building materials and a support material. The extended build platform at 510 x 510 x 400 mm reportedly enables a multitude of applications. Build area can be heated up to 200ºC in order to reduce stresses in the component and to process high-performance materials. It also features a considerably increased build rate, depending on the material, of up to 250 cm³/h (when using a 0.4-mm nozzle).

Moreover, the ExAM 510 concept enables increased precision of printed components, with the objective of taking advantage of AIM3D’s patented extruder technology. This extruder class offers an output up to 10 times higher than standard filament extruders, the company notes. Further, the use of linear motors and a stable mineral cast bed makes highly precise operation possible even at high speeds.

Coolant distributor nozzle from Schaeffler.

Coolant distributor nozzle from Schaeffler (Herzogenaurach, Germany), 3D printed with the CEM process and made of PPS GF 40 Type Fortron 1140L4 injection molding pellets from Celanese (Dallas, Texas, U.S.).

The use of a wide range of materials is one particular appeal, especially for composites fabricators. AIM3D equips the machine with a heated process chamber specially designed for high-temperature plastics. This enables the processing of high-temperature plastics such as PEEK, PEI, PSU, PPS, with and without fiber filling, directly in pellet form. 

Inexpensive recycling is also a capability. According to the manufacturer, a material can be tested in 1-2 working days and established for production in 5-10 working days. AIM3D uses PEEK as an example: if the price for PEEK filament is around €700/kg used on conventional AM machines, the ExAM 510 can use PEEK pellets, as deployed in convential injection molding. The market price of around €50/kg for PEEK pellets amounts to only 7% of comparable material costs or a cost reduction by a factor of 14. This opens up new dimensions in terms of cost efficiencies, AIM3D concludes.

 Range of materials for the ExAM 510

 Plastics

 PETG, PP, PA6, POM, PPS, PEEK, PEI, TPE

 Reinforced Plastics

PA6 GF30, PA6 GF40, PA6 MF60, PBT GF30, PA12 GF30, PA6 GB, PA6 CF15, PPS GF40, PEEK CF, PEEK Si

 Metals

 316-L, 17-4PH, 8620, 42CrMo4, 304, 420 W, WcCo, Ti64, Cu99

Ceramics

Al2O3, ZrO2, SiC, Si3N4

Areas of application for high-performance polymer materials can be found in automotive, medical technology or aerospace, end markets in which AIM3D’s pilot customers are based in. Reinforced plastics such as PA6 GF30, PPS GF 40, PEEK and PEI can specifically be used for applications like coolant technology, automotive and ESD housings. Aluminium and zirconium oxide, silicon carbide and silicon nitride ceramic materials are applicable for chemical process technology, high-voltage isolators and thermally stressed components. Metals like stainless steel, copper, tool steels, tungsten and tungsten carbide can be used with the ExAM 510 as well.

Airtech
Coast-Line Intl
SikaBlock® M974
re-engineered the ORPC foil and strut
Kennametal Composite Material Tooling Solutions
CAMX 2024
sustainable carbon fiber composites​
Thermwood Corp.
pro-set epoxy laminate infusion tool assembly
CompositesWorld
industrial CNC routers
HEATCON Composite Systems

Related Content

Aerospace

The potential for thermoplastic composite nacelles

Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.

Read More
Thermoplastics

The state of recycled carbon fiber

As the need for carbon fiber rises, can recycling fill the gap?

Read More
FRP Rebar

Composite rebar for future infrastructure

GFRP eliminates risk of corrosion and increases durability fourfold for reinforced concrete that meets future demands as traffic, urbanization and extreme weather increase.

Read More
Aerospace

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More

Read Next

Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Airtech International Inc.