Resin matrices: Thermoplastic
In contrast to crosslinking thermosets, whose cure reaction cannot be reversed, thermoplastics harden when cooled but retain their plasticity; that is, they will soften and can be reshaped repeatedly by reheating them above their processing temperature. Less-expensive thermoplastic matrices offer lower processing
In contrast to crosslinking thermosets, whose cure reaction cannot be reversed, thermoplastics harden when cooled but retain their plasticity; that is, they will soften and can be reshaped repeatedly by reheating them above their processing temperature. Less-expensive thermoplastic matrices offer lower processing temperatures, but also have limited use temperatures. They draw from the menu of both engineered and commodity plastics, such as polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate (PC), acrylonitrile butadiene styrene (ABS), polyamide (PA or nylon) and polypropylene (PP). High-volume commercial products, such as athletic footwear, orthotics and medical prostheses, benefit from the toughness and moisture resistance of these resins, as do automotive air intake manifolds and other underhood parts.
High-performance thermoplastic resins - polyetheretherketone (PEEK), polyetherketone (PEK), polyamide-imide (PAI), polyarylsufone (PAS), polyetherimide (PEI), polyethersulfone (PES), polyphenylene sulfide (PPS) and liquid crystal polymer (LCP) - function well in high-temperature environments and, when exposed to moisture, neither absorb water nor degrade. Reinforced with high-performance fibers, these resins exhibit lengthy prepreg shelf life without refrigeration and provide exceptional impact resistance and vibrational damping, although they present some processing challenges because of their high viscosity.
Related Content
-
Hybrid process marries continuous, discontinuous composites design
9T Labs and Purdue applied Additive Fusion Technology to engineer a performance- and cost-competitive aircraft bin pin bracket made from compression-molded continuous and discontinuous CFRTP.
-
Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
-
Queen’s University Belfast presents research in thermoplastic drilling performance optimization
Researchers have published findings from a multi-objective optimization study on carbon fiber-reinforced PEKK drilling in an effort to better understand the material for use in aviation fastenings.