recycle carbon fiber
Published

Structural adhesives: Plus ça change ….

A CW columnist and the chief commercialization officer for the Institute for Advanced Composites Manufacturing Innovation (IACMI, Knoxville, TN, US), Dale Brosius makes the case that, in both the aerospace and automotive sectors, it’s time to develop robust adhesive alternatives to fasteners.

Dale Brosius , Contributing Writer, Institute for Advanced Composites Manufacturing Innovation (IACMI)

Share

Back in 2000, in just my second year as an independent consultant, then publisher/editor-in-chief Judy Hazen asked me to join the writing staff of High-Performance Composites and sister publication Composites Technology, the two magazines that, in 2015, were merged to become this magazine, CompositesWorld. My first feature article appeared in the July/August issue of High Performance Composites. Titled “The new glue: Stronger, tougher, more versatile,” it was what we called a “roundup.” I contacted major suppliers in the structural adhesives market, plus a few end-users, and compiled the trends and a description of the latest products.

Back in those days, every magazine issue contained inserts called Reader Service Cards (nicknamed “bingo cards”) with numbers corresponding to specific products or topics of interest. Readers would circle numbers on the card corresponding to a numbered list of suppliers at the end of each article, mail in the card, and these “leads” would be passed along to suppliers. At the time, my article generated more leads than any previously published article in either magazine, a clear indicator that structural adhesives were of high interest and, perhaps, poised for major breakthroughs. Not to mention that I had a strong future as a writer in the field of composites ….

It’s clear that joining, and the subset of adhesive bonding, is an important topic in the composites industry. The growth in structural composites in aircraft, wind turbines and automobiles certainly suggests a market fueled by advances in how to “put things together.” However, when I reviewed that article from 2000 and subsequent roundups from 2004 and 2007 penned by other staff members, and then looked around at the industry today, I was reminded of the famous French phrase, “plus ça change, plus c’est la même chose,” which translates roughly to “the more things change, the more they stay the same.”

Processing innovations have led to wider adoption of advanced composites in many industries and with it, the need to assemble multiple structural elements in complex structures. But the adoption of structural adhesive technologies for those assemblies has trailed by comparison. It’s not that new products haven’t been introduced — it’s just that these have not been able to overcome the industry tendency to prefer alternate solutions to adhesive bonding for critical structures or final assemblies.

There are exceptions: The marine and wind turbine industries have used paste adhesives for structural bonding since at least 2000, with a high degree of confidence. With dimensional tolerances much less stringent than aerospace or automotive, these adhesives often must, and successfully do, fill gaps as wide as 50 mm. These are not static applications, either — boats, especially large sailboats, see significant loads on the water, and wind turbine blades are expected to endure fatigue loads over 20 years, at finished part costs of under $15/kg.

Where things tend to stay the same, but ought not to, is the automotive and aerospace realms. Although the automotive industry relies on bonding at the component level, opportunities exist in the assembly plants, particularly for attaching composite components to metallic structures. Many molded parts are adhesively bonded together — for example, SMC inner and outer panels rely on urethane adhesives, and the numerous molded components of the BMW i3 and i8 are joined with epoxy. It’s logical that panels that have a need to be removed, such as hoods or fenders, are attached with fasteners, but fixed structures made of composites, like roofs, floor pans and pickup boxes incorporate metallic inserts or are bonded to metal fittings, then are mechanically fastened to the vehicle during assembly. As the industry continues to evolve into multi-material vehicles, there is significant upside to developing robust adhesive approaches.

In the aerospace industry, film adhesives are the staple for making honeycomb sandwich panels used for secondary structures, and will continue to be a large consumer of such materials. But aerocomposites manufacturers prefer co-cured structures, despite the increased complexity in bagging and fixtures, to bonding less complex shapes. Further, work in infusion or RTM seeks to make entire assemblies in one shot, using very complicated tooling to achieve this, and at some higher manufacturing risk. And the industry is most averse to using adhesives to bond critical structures, preferring to drill thousands of holes in composites (knowing full well such holes reduce performance), using bolts and rivets in combination with adhesives to build aircraft — not trusting the glue to do the job alone. I understand the theory behind such “chicken rivets,” but the practice seems archaic. If reducing the costs of building aerospace composites is a priority, figuring out how to do this without fasteners merits some increased attention.  

ELFOAM rigid foam products
Adhesives for Composite Materials
Toray Advanced Composites hi-temperature materials
Wabash
NewStar Adhesives - Nautical Adhesives
recycle carbon fiber
ColorForm multi-component injection
Eliminate Quality Escapes  With LASERVISION AI

Related Content

Ketones

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More

A new era for ceramic matrix composites

CMC is expanding, with new fiber production in Europe, faster processes and higher temperature materials enabling applications for industry, hypersonics and New Space.

Read More
Nanomaterials

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Work In Progress

ASCEND program update: Designing next-gen, high-rate auto and aerospace composites

GKN Aerospace, McLaren Automotive and U.K.-based partners share goals and progress aiming at high-rate, Industry 4.0-enabled, sustainable materials and processes.

Read More

Read Next

Glass Fibers

VIDEO: High-volume processing for fiberglass components

Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.

Read More
Hi-Temp Resins

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Welding

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More
ColorForm multi-component injection