LM Wind Power reports it will produce zero waste blades by 2030
Blade manufacturing waste prevention and recycling becomes the GE Renewable Energy business’ primary focus as it seeks to reduce its carbon footprint.
Photo Credit: LM Wind Power
On Nov. 23, LM Wind Power (Kolding, Denmark), a GE Renewable Energy business, announced its pledge to produce zero waste blades by 2030 in order to reduce the carbon footprint of the company’s products. The commitment represents a step forward in the company’s sustainability journey after becoming what is says was the first carbon-neutral business in the wind industry back in 2018.
LM Wind Power will play a central role in supporting its customers to develop fully circular wind turbines that generate less waste during their production. In practice, LM Wind Power’s vision of zero waste blades means the company aims to send no manufacturing materials and packaging to landfill and incineration without energy recovery by 2030.
Waste from manufacturing represents one of the biggest challenges faced by many industries as they seek to reduce their carbon footprint. Nearly one third of its operational carbon footprint comes from waste disposal. Moreover, in the wind industry, around 20-25% of the materials purchased by wind turbine blade manufacturers do not go into the final product, and research indicates that blade manufacturing waste volumes are expected to be larger than decommissioned blade volumes during the coming decade.
“We have a track record of working with our partners to address our most pressing challenges. Our technology has played a crucial role in making wind power one of the most competitive sources of electricity,” states Olivier Fontan, CEO of LM Wind Power. “Now the focus has evolved from making wind power not only competitive, but also making the industry sustainable. It is not one or the other but both. We are determined to work with our partners to reduce the carbon footprint of wind turbines; together we can be the example of how an industry transforms its value chain to support the green transition and the critical move to a circular economy. Zero waste blades are our contribution to this industry mission.”
For wind turbine and blade manufacturers alike, LM Wind Power says, the key to reducing the product carbon footprint lies in the supply chain. In the blade life cycle, around 75% of CO2 emissions occur in the supply chain.
“This is a call to action for suppliers to the wind industry: Join us in designing out waste from our value chain,” says Hanif Mashal, LM Wind Power vice president, engineering and technology. “Engagement with our supply chain on waste prevention will increase over the coming years; in partnerships we will also explore how we can ultimately deliver waste back to suppliers, for recycling into new materials that will be supplied to the wind industry or other sectors.”
While blade manufacturing waste prevention and recycling will be a major focus for the company, LM Wind Power is also working with partners to establish sustainable, large-scale solutions to recycle decommissioned blades through the DecomBlades project. The wind company is also engaged in the development of next-generation blades that can be more easily recycled through the ZEBRA (Zero Waste Blade Research) project (see more “Arkema's partnership with ZEBRA project commits to circular economy”).
Related Content
ASCEND program update: Designing next-gen, high-rate auto and aerospace composites
GKN Aerospace, McLaren Automotive and U.K.-based partners share goals and progress aiming at high-rate, Industry 4.0-enabled, sustainable materials and processes.
Read MoreWatch: A practical view of sustainability in composites product development
Markus Beer of Forward Engineering addresses definitions of sustainability, how to approach sustainability goals, the role of life cycle analysis (LCA) and social, environmental and governmental driving forces. Watch his “CW Tech Days: Sustainability” presentation.
Read MorePlant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France
Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.
Read MoreMicrowave heating for more sustainable carbon fiber
Skeptics say it won’t work — Osaka-based Microwave Chemical Co. says it already has — and continues to advance its simulation-based technology to slash energy use and emissions in manufacturing.
Read MoreRead Next
Modeling and characterization of crushable composite structures
How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.
Read MorePlant tour: A&P, Cincinnati, OH
A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.
Read More“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read More