Germany-based SMC research project seeks partners
AZL Aachen GmbH and IKV at RWTH Aachen University are seeking partners to evaluate next-generation sheet molding compound technologies.
In June 2017, AZL Aachen GmbH (Aachen, Germany) in cooperation with the Institute of Plastics Processing (IKV) at RWTH Aachen University will start a Joint Market and Technology Study on High-Performance sheet molding compound (SMC) with the aim to evaluate the potential of a next generation of SMC in industrial applications. Companies along the entire SMC value chain as well as those interested in the SMC market are invited to join.
The study will operate on the premise that the drive to further weight savings and significant reduction in CO2 emissions requires a next generation of high-performance SMC with short and continuous fiber-reinforced systems using carbon and glass fibers with customized resin compounds.
The Joint Market and Technology Study on High-Performance SMC of AZL and IKV aims to broaden the understanding of these interdependencies by providing in-depth knowledge on SMC applications and technologies, key challenges and technological solutions for establishing HP-SMC. This will serve as basis for the elaboration of design guidelines, a target-oriented development and to open up new business opportunities.
Scope and content of the study have been developed in close collaboration with the industrial AZL Workgroup which was established in an initial workshop in 2016 with more than 60 participants from the industry, including several automotive OEMs such as Audi, BMW, Ford, Hyundai, MAN, Toyota and Volkswagen. During several meetings, the industrial workgroup defined different joint research and development initiatives to build a toolbox for HP-SMC, one of them being the Joint Market and Technology Study on High-Performance SMC.
The 12-month study is designed as a joint project involving players along the entire value chain. This approach allows participants to benefit from the knowledge of all study partners and experts who are involved in the project. Study participants will be a direct part of the study and will be able to influence the progress according to their specific demands.
Based on the state of the art of SMC technology, use cases and value chains with special consideration of HP-SMC, a Failure Mode and Effects Analysis (FMEA) for specific production and application scenarios will be conducted to evaluate existing technologies currently applied and their readiness level. Established best practice solutions will be demonstrated as well. Remaining key challenges and their interactions along the value chain will be concluded to define fields of action for targeted development for HP-SMC. Based on the detailed technology studies, new scenarios to solve the key challenges will be developed to provide necessary information to support product and service development of the participating companies. AZL and IKV will evaluate and determine which products, materials and technologies from other technological areas provide potential solutions and will give an overview of the markets, value chains and providers for such next-level solutions as basis for new business opportunities. The study will be a basis for joint developments to establish HP-SMC in broad industrial applications.
AZL partner companies and members of the IKV association of sponsors can participate at a reduced fee. The finalization of the consortium and information on the content and approach of the study will be conducted in an information event during the 3rd Workgroup Meeting of the High-Performance SMC Workgroup on May 31, 2017 in Aachen. Information event and Workgroup Meeting are open for all interested companies. The deadline for participation in the study is June 15, 2017.
Related Content
New polymer expands composites options in demanding environments
Aromatic thermosetting copolyester offers unique properties, availability in multiple form factors.
Read MoreThermoplastic composites: Cracking the horizontal body panel nut
Versatile sandwich panel technology solves decades-long exterior automotive challenge.
Read More“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read MoreCarbon fiber, bionic design achieve peak performance in race-ready production vehicle
Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.
Read MoreRead Next
CFRP planing head: 50% less mass, 1.5 times faster rotation
Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.
Read MorePlant tour: A&P, Cincinnati, OH
A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.
Read More“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read More