Composites One
Published

Unweighting a crane to increase payload limit

Rethinking a crane stinger with carbon fiber for a more “uplifting experience.”

Share

The payload capacity of a crane depends on the strength and stiffness of the materials used to make the arm. It also depends, ironically, on the arm’s weight. That is, the greater the arm’s weight, the less payload it can bear. Conversely, you can increase the payload capacity of the crane by reducing the mass of its arm. In other words, the crane arm is an ideal application for composites.

The Manitowoc Co., a crane manufacturer located in Shady Grove, PA, US, recognized this advantage and decided to target the stinger or fly jib — the final segment of an articulating crane arm — on one of its truck-mounted cranes, replacing the traditional 24-ft (7.3m) steel structure with one of carbon fiber composite.

Sammy Munuswamy, senior principal engineer, global engineering and innovation at Manitowoc, says the company is “in the business of building lifting experiences for our customers around the world.” And a quality “lifting experience,” in Manitowoc’s view, should be one where
 the tool (crane) facilitates the jobs to be done at a variety of jobsite environments, including buildings, roadsides, heavy construction sites and more. “Cranes are getting lighter,” Munuswamy says, “and we need materials to meet that expectation. The stinger section was identified as an ideal candidate for conversion into a carbon fiber light-weight structure since the outermost crane arm components generate the highest bending moments on the crane. Therefore, reducing weight in such members brings the most tangible benefits.”

The stinger was developed by Manitowoc in collaboration with Riba Composites Srl (Faenza, Italy), which has extensive experience designing and manufacturing large composite structures. Munuswamy says one of the challenges the company faced was the reality that cranes, as a cost-sensitive, low-volume product, do not allow for expensively engineered structures. In addition, the composite stinger is a drop-in replacement for its predecessor.

Because the carbon fiber stinger works as a component retrofit compatible with existing cranes, Riba's engineers exploited all the available design space, maximizing the moment of inertia and the geometric properties of the stinger. The result is a hybrid structure where steel and composite match to take advantage of the specific properties of each material. The junction between steel and composite relies on bonding and bolts, which allow an effiient solution.

Andrea Bedeschi, general manager at Riba, says the composite stinger is hand-laid, using carbon fiber prepreg and autoclave cure. The carbon fiber, standard-modulus 12K and 24K tow, is supplied by Mitsubishi Chemical Carbon Fiber & Composites Inc.. The resin is a toughened epoxy. Riba performed NDT evaluation of the stinger; physical load, stability and structural performance testing was done by Manitowoc.

The composite stinger is 35% lighter than its steel predecessor and, says Munuswamy, increases payload capacity 12-15% more than the steel version in some specific boom configurations. The composite stinger also is more expensive than its steel predecessor, but Munuswamy says this is more than compensated for by increased jobsite efficiency and transportability.

Will Manitowoc expand carbon fiber use to other crane components? “This [the stinger] is leading us in that direction,” Munuswamy says. “The stinger was the first step.” 

Toho Tenax America Inc.

Custom Quantity Composite Repair Materials
Composites One
BARRDAY PREPREG
Harper International Carbon Fiber
Adhesives for Composite Materials
Toray Advanced Composites
NewStar Adhesives - Nautical Adhesives
HEATCON Composite Systems

Related Content

Fabrics/Preforms

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More
Prepregs

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More
Carbon Fibers

Hexcel opens new R&T center in Salt Lake City

Hexcel’s new 100,000-square-foot Center of Research & Technology Excellence at its Salt Lake City, Utah, U.S., campus, will be the focus of the company’s innovation efforts.

Read More
Aerospace

Designing and manufacturing turbine test nacelles

Michigan-based Ground Test Solutions (GTS) shares the design and manufacturing processes involved in building composite nacelle components used in testing jet and helicopter engines.

Read More

Read Next

Thermoplastics

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Ready-to-Ship Composites