GE to develop largest, most powerful wind turbine
The Haliade-X will feature a 12 MW direct drive generator and 107m-long blades.
GE Renewable Energy (Paris, France) unveiled March 1 its plan to develop the largest, most powerful offshore wind turbine: the Haliade-X. Featuring a 12 MW direct drive generator and an industry leading gross capacity factor of 63%1 the Haliade-X will produce 45% more energy than any other offshore turbine available today2. GE will invest more than $400 million over the next three to five years in development and deployment of the Haliade-X.
John Flannery, chairman and CEO of GE, says, "We want to lead in the technologies that are driving the global energy transition. Offshore wind is one of those technologies and we will bring the full resources of GE to make the Haliade-X program successful for our customers."
Towering 260 meters over the sea, more than five times the size of the iconic Arc de Triomphe in Paris, France, the Haliade-X 12 MW carries a 220m rotor. Designed and manufactured by LM Wind Power, the 107m-long blades will be the longest offshore blades to date and will be longer than the size of a soccer field. One Haliade-X 12 MW turbine will generate up to 67 GWh annually2, enough clean power for up to 16,000 households per turbine, and up to 1 million European households in a 750 MW windfarm configuration.
Jérôme Pécresse, president and CEO of GE Renewable Energy says, "The renewables industry took more than 20 years to install the first 17 GW of offshore wind. Today, the industry forecasts that it will install more than 90 GW over the next 12 years. This is being driven by lower cost of electricity from scale and technology. The Haliade-X shows GE's commitment to the offshore wind segment and will set a new benchmark for cost of electricity, thus driving more offshore growth."
The ability to produce more power from a single turbine means a smaller number of turbines in the total farm, which translates to less capital expenditure for the balance of plant and reduced risk in project execution as the installation cycle time is reduced. It also simplifies operation and maintenance of the wind farm. All of this reduces the investment and operation cost for developers, makes offshore wind projects more profitable, and ultimately lowers cost of electricity for consumers.
To design and build the Haliade-X platform, GE Renewable Energy is relying on an unprecedented collaboration across the GE portfolio, leveraging the knowledge of GE's Onshore wind team, with 50,000 turbines in the field; the blade expertise of LM Wind Power; the GE Power and GE Aviation engineers for peer reviews of component and systems design; the Global Research Center for control systems and component validation; and GE Digital for supporting digital modelling, analytics and app development. The program is a GE-wide effort.
GE Renewable Energy aims to supply its first nacelle for demonstration in 2019 and ship the first units in 2021.
1. "Capacity factor" compares how much energy was generated against the maximum that could have been produced at continuous full power operation during a specific period of time.
2. Based on wind conditions on a typical German North Sea site.
Related Content
RTM, dry braided fabric enable faster, cost-effective manufacture for hydrokinetic turbine components
Switching from prepreg to RTM led to significant time and cost savings for the manufacture of fiberglass struts and complex carbon fiber composite foils that power ORPC’s RivGen systems.
Read MoreNovel composite technology replaces welded joints in tubular structures
The Tree Composites TC-joint replaces traditional welding in jacket foundations for offshore wind turbine generator applications, advancing the world’s quest for fast, sustainable energy deployment.
Read MoreInfinite Composites: Type V tanks for space, hydrogen, automotive and more
After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.
Read MoreHexagon Purus opens new U.S. facility to manufacture composite hydrogen tanks
CW attends the opening of Westminster, Maryland, site and shares the company’s history, vision and leading role in H2 storage systems.
Read MoreRead Next
Modeling and characterization of crushable composite structures
How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.
Read More“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read MorePlant tour: A&P, Cincinnati, OH
A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.
Read More