Airtech
Published

Siemens Gamesa, Siemens Energy partner for offshore green hydrogen production acceleration

Five-year project is the first major step to develop an industrial-scale system capable of harvesting green hydrogen from offshore wind.

Share

Close-up of SGRE's SG 14-222 DD wind turbine

SGRE’s SG 14-222 DD turbine, which retains a 222-meter rotor and 108-meter-long B108 blades, based on IntegralBlade technology. Photo Credit: SGRE

Siemens Gamesa Renewable Energy (SGRE, Zamudio, Spain) and Siemens Energy AG (Munich, Germany) have announced that the companies are combining ongoing wind-to-hydrogen developments to address decarbonizing the economy (see “Siemens Gamesa powers carbon-free future with green hydrogen”).

The innovative solution will fully integrate an electrolyzer — a system that uses electricity to break water into hydrogen and oxygen in a process called electrolysis — into an offshore wind turbine as a single synchronized system to directly produce green hydrogen. The companies intend to provide a full-scale offshore demonstration of the solution by 2025/2026. Further, German Federal Ministry of Education and Research announced that the developments can be implemented as part of the ideas competition “Hydrogen Republic of Germany.”   

“Our more than 30 years of experience and leadership in the offshore wind industry, coupled with Siemens Energy’s expertise in electrolyzers, brings together brilliant minds and cutting-edge technologies to address the climate crisis,” says Andreas Nauen, Siemens Gamesa CEO. “Our wind turbines play a big role in the decarbonization of the global energy system, and the potential of wind to hydrogen means that we can do this for hard-to-abate industries, too. It makes me proud that our people are a part of shaping a greener future.”  

Over a timeframe of five years, Siemens Gamesa plans to invest EUR €80 million and Siemens Energy is targeting to invest EUR €40 million in the developments. Siemens Gamesa says it will adapt development of its SG 14-222 DD offshore wind turbine to integrate an electrolysis system seamlessly into the turbine’s operations. By leveraging Siemens Gamesa’s knowledge and decades of experience with offshore wind, electric losses will reportedly be reduced to a minimum, while a modular approach ensures a reliable and efficient operational setup for a scalable offshore wind-to-hydrogen solution. Siemens Energy plans to develop a new electrolysis product to not only meet the needs of the harsh maritime offshore environment and to be in perfect sync with the wind turbine, but also to create a new competitive benchmark for green hydrogen.  

According to Siemens Gamesa, the solution will ultimately lower the cost of hydrogen by being able to run off-the-grid, opening up more and better wind sites. The companies’ developments will also serve as a testbed for making large-scale, cost-efficient hydrogen production a reality. 

Further, the developments are part of the H2Mare initiative, which, under the consortium lead of Siemens Energy, is a modular project consisting of multiple sub-projects to which more than 30 partners from industry, institutes and academia are contributing. Siemens Energy and Siemens Gamesa will contribute to the H2Mare initiative with each company’s own developments in separate modular building blocks. 

Zone 5 CLEAVER
Airtech
Coast-Line Intl
CIJECT machines and monitoring systems
Composites in New Space Applications
Alpha’s Premier ESR®
Large Scale Additive Manufacturing
HEATCON Composite Systems
Release agents and process chemical specialties
Airtech
NewStar Adhesives - Nautical Adhesives
Visual of lab with a yellow line

Related Content

Pressure Vessels

Composites end markets: Batteries and fuel cells (2024)

As the number of battery and fuel cell electric vehicles (EVs) grows, so do the opportunities for composites in battery enclosures and components for fuel cells.

Read More
Infusion

Novel dry tape for liquid molded composites

MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.

Read More
Hydrogen Storage

NCC reaches milestone in composite cryogenic hydrogen program

The National Composites Centre is testing composite cryogenic storage tank demonstrators with increasing complexity, to support U.K. transition to the hydrogen economy.

Read More
Nanomaterials

JEC World 2023 highlights: Recyclable resins, renewable energy solutions, award-winning automotive

CW technical editor Hannah Mason recaps some of the technology on display at JEC World, including natural, bio-based or recyclable materials solutions, innovative automotive and renewable energy components and more.

Read More

Read Next

Filament Winding

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
RTM

VIDEO: High-rate composites production for aerospace

Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.

Read More
Design/Simulation

Modeling and characterization of crushable composite structures

How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.

Read More
Airtech International Inc.