A surge in seaplanes?
The current bright spot in general aviation might be in light-sport aircraft (LSA), and more specifically in seaplanes.
The Vickers Wave seaplane is a true composite, built from an aluminum primary structure surrounded by a carbon fiber hull.
The current bright spot in general aviation, according to a March 30 online article by Dan Johnson of General Aviation News, is light-sport aircraft (LSAs, see the original article here: generalaviationnews.com/2014/03/30/seaplane-lsas-take-off/). Johnson says that as LSAs approach the end of their first decade this summer, 134 models have already been created and gained FAA acceptance, an impressive pace that represents more than one new design every month for 10 years running.
In 10 years, LSA have morphed from ultralight or light kit aircraft into a fleet of modern and capable aircraft manufactured under industry consensus standards. In 2014 it is becoming clear that the LSA industry is embarking on a new level of achievement; some of the most intriguing of these, says Johnson, are seaplanes.
Icon stimulated the market for these advanced ships with fresh ideas and creative engineering. A team from Scaled Composites (key participants in the creation of SpaceShipOne and many unique aircraft) joined Icon to produce the A5. The Southern California company reportedly has more than 1,000 aircraft orders. While Team Icon works to assemble a manufacturing system, other seaplane designs are coming into view. In addition to several proven designs, including Searey, Super Petrel, SeaMax and Mermaid that are all presently accepted by FAA as Special LSAs (SLSA), Freedom, Aventura, and Atol are also in the mix (a review of most of these can be found at www.bydanjohnson.com/Sidebar.cfm?Article_ID=1732).
Yet among LSA seaplanes, the next generation wave is building and Johnson expects additional designs to emerge this year. Among them are some of the most technically sophisticated flying machines in the entire LSA space.
Consider this: The Lisa Akoya, Icon’s A5, the Vickers Wave, and one other unidentified company have all secured substantial funding from Chinese investors. They join such notable aviation enterprises as Cirrus Aircraft, Continental Motors, Flight Design, Superior Air Parts and others in securing Chinese investment. In the case of the LSA seaplanes, the investors are not taking over the companies and appear primarily focused on the China market, says Johnson.
Lisa’s Akoya, priced near $400,000, is a unique design that in some ways attempts to surpass Icon’s A5. Both are flying at present, but neither has gone to the conforming prototype stage, according to Johnson (see the CompositesWorld blog about Lisa Airplanes dated 1/31/14).
The groundbreaking Wave from Vickers Aircraft in New Zealand has reportedly received funding from Chinese investors, which could accelerate its seven-year-old design project so that it can take to the skies this summer.
Wave (pictured) has several popular characteristics, such as powered folding wings, sliding doors, enough aft cabin space to allow a four-seat design in the future, and specialized landing gear involving as many as seven wheels. Wave’s “Cross-Over” landing gear does not need to be retracted, which eliminates some weight and reduces pilot workload. The gear pivots enough to aid crosswind landings on hard surfaces.
Wave is a true composite, built from an aluminum primary structure surrounded by a carbon fiber hull. As parts go together in prototype number one, Vickers said all parts are matching the weights as predicted by state-of-the-art computer design software.
As with every design since the Wright brothers’ first biplane 111 years ago, the proof of design will be found in the flying, but Wave, A5, Akoya, and others yet to be identified are showing the LSA seaplane subcategory to be a fountain of engineering prowess.
See the original article here: generalaviationnews.com/2014/03/30/seaplane-lsas-take-off/
Related Content
The state of recycled carbon fiber
As the need for carbon fiber rises, can recycling fill the gap?
Read MorePEEK vs. PEKK vs. PAEK and continuous compression molding
Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.
Read MoreManufacturing the MFFD thermoplastic composite fuselage
Demonstrator’s upper, lower shells and assembly prove materials and new processes for lighter, cheaper and more sustainable high-rate future aircraft.
Read MoreThe potential for thermoplastic composite nacelles
Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.
Read MoreRead Next
VIDEO: High-rate composites production for aerospace
Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.
Read MoreCFRP planing head: 50% less mass, 1.5 times faster rotation
Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.
Read More“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read More