Ready-to-Ship Composites
Published

Oil drives the Big Three

This is, in some ways, a tough time to be a U.S.-based automaker. Detroit’s traditional Big Three (GM, Chrysler, Ford) are struggling to keep up with Japan’s Big Three (Toyota, Honda, Nissan) and trying hard to develop cars and trucks that are good-looking, reliable and fuel-efficient. On top of this, rising oil

Share

This is, in some ways, a tough time to be a U.S.-based automaker. Detroit’s traditional Big Three (GM, Chrysler, Ford) are struggling to keep up with Japan’s Big Three (Toyota, Honda, Nissan) and trying hard to develop cars and trucks that are good-looking, reliable and fuel-efficient. On top of this, rising oil prices, concerns about global warming and increased consumer eco-sensitivity are forcing all carmakers to develop and explore new technologies (the batteries that enable plug-in electric cars, fuel cells, hydrogen storage tanks and the like) that have high upfront cost but a long return on investment. Still, the effort at innovation is being made and change is afoot in automotive development. The question before us is this: Is the composites industry ready to be a part of this technology shift?

Things certainly looked promising as 2007 started. First out of the gate was the Tesla Roadster, the composites-intensive, all-electric sportscar that debuted in January last year. This was followed by the introduction of GM’s Volt, a plug-in gas/electric hybrid that, promisingly, used composite body panels in concept form, but sadly, from what we hear, is headed into production sans composites panels. Then, this month, at the North American International Auto Show (NAIAS) in Detroit, Mich., came Fisker Automotive’s Karma, an $80,000 plug-in gas/electric hybrid that should be available to consumers by 2009. Designed to run 50 miles on a single charge, the Karma would be a prime candidate for composites. Alas, it’s aluminum-intensive.

While all this was happening, the U.S. Congress responded to oil’s scarcity and increasing cost by passing new corporate average fuel economy (CAFE) standards as part of the 2007 energy bill that was signed into law in mid-December. On paper, the new CAFE standards seem reasonable: by 2020, the fleet of cars and light trucks fielded by each carmaker must average 35 mpg. Automakers, however, claim that the CAFE standards impose artificial and sometimes unattainable goals on the industry and handcuff them when it comes to responding to consumer demand.

For the time being, however, consumer demand and CAFE standards are congruent: we drivers, tired of paying $50 to fill our gas tanks, are demanding efficient, eco-friendly, safe, sleek and sometimes fast cars.

Each of these demands should be driving automakers toward greater use of composites: When it comes to strength-to-weight ratios, styling freedom and the potential for parts consolidation, composites are impossible to beat. Their biggest hurdle — and it is a high one — is production cycle time for large composites parts, such as body panels. The goal, we keep hearing, is a sub-two-minute cycle time for a composites molding process using an affordable material. And we don’t have it yet. SMC is promising but offers relatively modest weight savings given wall thicknesses required. Carbon fiber prepreg as a material is ideal but too expensive and requires autoclave cure. Reinforced thermoplastics have made huge strides in recent years and meet the affordability requirement, but cycle times are still too long. The automotive composites industry, therefore, needs two things: A proven, fast manufacturing process using an affordable material, and an automaker willing to take the risk of embracing it. The former seems a likely, if slow-developing, prospect given past and ongoing technological advancements in composites. The forthcoming Corvette ZR1 is emblematic of this potential, but primarily in low-volume, more expensive vehicles (click on “NAIA Show Highlights,” under “Related Content,” at left). The latter, a risk-taking automaker, might be harder to find, but one has to hope that the built-in value of composites will help the material sell itself. Ultimately, though, the automotive composites industry will have to pull together to collectively, aggressively, assertively and positively sell itself to become a major player in the rapidly changing automotive world. What is known for sure is that the window of opportunity is open now as it never has been before.

Harper International Carbon Fiber
Composites One
Adhesives for Composite Materials
Custom Quantity Composite Repair Materials
BARRDAY PREPREG
Toray Advanced Composites
Release agents and process chemical specialties
CAMX 2024
NewStar Adhesives - Nautical Adhesives
CompositesWorld
Airtech
Advert for lightweight carrier veils used in aero

Related Content

Graphene-enhanced SMC boosts molded component properties

CAMX 2023: Commercially sold GrapheneBlack SMC from NanoXplore increases part strength, stiffness and provides other benefits for transportation, renewable energy, energy storage and industrial markets.

Read More

Ply stacking, cutting process optimized via automation, smaller footprint

CAMX 2024: Schmidt & Heinzmann customers are able to produce SMC or dry fiber fabric stacks more efficiently thanks to the AutoCut Pick&Place system.

Read More

Improving carbon fiber SMC simulation for aerospace parts

Simutence and Engenuity demonstrate a virtual process chain enabling evaluation of process-induced fiber orientations for improved structural simulation and failure load prediction of a composite wing rib.

Read More

SMC composites progress BinC solar electric vehicles

In an interview with one of Aptera’s co-founders, CW sheds light on the inspiration behind the crowd-funded solar electric vehicle, its body in carbon (BinC) and how composite materials are playing a role in its design.  

Read More

Read Next

Aerospace

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Automotive

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Composites One