Promising, incremental change
There’s been no getting around, lately, the pre-rollout hoopla and excitement surrounding the scheduled debut of the first Boeing 787 Dreamliner.
There’s been no getting around, lately, the pre-rollout hoopla and excitement surrounding the scheduled debut of the first Boeing 787 Dreamliner in July,(see “Boeing 787 Update” under “Related Content,” at left). And certainly the attention is warranted, given the depth and breadth of carbon fiber composites use on the craft. It’s easy, though, in the glare of the 787, to overlook other emerging applications and markets we cover here in CT, which, while not as glamorous, may prove comparably promising.
A case in point is auto manufacturing. One of the holy grails for the composites industry — production-volume automotive body panels — remains tantalizingly out of reach, but the quantity and quality of R&D work in this field, covering everything from materials to tooling to processing, is voluminous and encouraging. Unlike airplane manufacturers, though, carmakers rely on speed of production using inexpensive materials — hence the popularity of processes like injection molding, and hence the struggles of processes like RTM. Still, we’ve heard some carmakers say that if a composites molding process can get below the two-minute cycle time, then a whole world of possibilities opens up. And that cycle time is within reach.
In the meantime, we watch avidly as the industry inches forward, experimenting with carbon and glass in a variety of automotive applications. The most recent and highest profile example is the Tesla Roadster, covered this month in “Engineering Insights” (see “Related Content”). It’s a compelling combination of carbon fiber body panels on a sporty, high-speed all-electric vehicle. It lacks some of the hallmark attributes of an everyday car — it costs $100,000 and only 2,000 will be made annually — but employs creative engineering and high-performance carbon fiber combined with emerging battery technology that makes it more than just another high-priced joyride. In fact, one can see with the Roadster an evolution that might, with a little more creativity, bring it to within reach for more than just the well-heeled.
Another market that bears watching is deepsea oil exploration. Our cover story this month (see “Deepwater ….” under “Related Content”) brings you up to speed on where, how and to what extent composites are finding use on off-shore drilling platforms, in applications ranging from risers to emergency escape boats to equipment shrouds. While this market has been an evolving one for composites for some time, the rising cost of crude oil demands that drillers be even more cost-conscious and creative when it comes to materials use on rigs. Composites have and will continue to function effectively in this environment.
Percolating in the background of these two markets — automotive and oil exploration — is the steady drumbeat of environmental, resource and cost consciousness that is forcing many manufacturers (your customers) to rethink when and how materials are used and how they contribute to product sustainability. The electric vehicle, declared dead just a few years ago, is enjoying a cautiously optimistic rebirth, and the volatility of the energy markets demands that oil explorers be more careful about how they harvest product. It’s clear that composites do and will have a big role to play.
Related Content
A new era for ceramic matrix composites
CMC is expanding, with new fiber production in Europe, faster processes and higher temperature materials enabling applications for industry, hypersonics and New Space.
Read MorePEEK vs. PEKK vs. PAEK and continuous compression molding
Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.
Read MoreCombining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
Read MoreWelding is not bonding
Discussion of the issues in our understanding of thermoplastic composite welded structures and certification of the latest materials and welding technologies for future airframes.
Read MoreRead Next
All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat
Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.
Read MorePlant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France
Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.
Read MoreVIDEO: High-volume processing for fiberglass components
Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.
Read More