Composites One
Published

There are no bad ideas

Whenever we, as an editorial staff, sit down to begin planning editorial features and other articles for the coming year, we get our ideas from a variety of sources.

Share

Whenever we, as an editorial staff, sit down to begin planning editorial features and other articles for the coming year, we get our ideas from a variety of sources. Some are pitched to us by processors or suppliers and some are conjured up by members of the editorial staff. Many ideas, even in the planning stage, are fairly well-formed and focused. Some are clearly structured around a specific case history — these often become our “Inside Manufacturing” articles. Others center around part design and material selection, thus making them good candidates for our “Focus on Design.” Throughout the year, we also do what we call technology “roundups.” These might focus on a material type (fiber or resin), a manufacturing process, curing methods or any of a large number of types of manufacturing equipment. Technology stories are often selected and assigned because they represent a segment that HPC has not covered for some time and has shown some signs of evolving. For example, a few years ago, we did several articles on fiber forms, during the time when nonwoven reinforcements were beginning to supplant woven fabrics in a number of applications because they offer a method of construction that does not crimp the fiber.

Such stories can easily take on a life of their own, evolving quickly from a technology update to a multipart, multidimensional, full-grown exploration of the many ins and outs of the technology, process or material. This month’s issue gave birth to one such behemoth, which reviews current offerings in the automated fiber placement (AFP) and automated tape placement (ATL) world.

This story seemed like a simple one when we scheduled it. The increasing and heavy use of ATL and AFP in the manufacture of major structures for commercial aircraft like the Boeing 787 Dreamliner and the Airbus A350 XWB — particularly the fuselages — almost demanded an assessment of this dynamic segment of the machinery market, where fast-changing hardware and software capabilities are making once difficult and prohibitively expensive composite structures feasible and practical.

However, when I began making calls and talking to folks heavily involved with ATL/AFP, I quickly discovered that there was greater change, more hardware and software variation than I had expected and a wide range of opinions about what the next 5 to 10 years will hold for these similar but decidedly different manufacturing methods. The resulting narrative emerged at 5,000-plus words and, although thorough, proved to be much too long given our physical space limitations in this issue.

Rather than pare the article down to the bone and risk losing valuable information, we opted to publish it in two parts. Part I appears in this issue (see "Editor's Picks") and is the technology “roundup” I had intended to write. It looks at who’s making what kinds of ATL/AFP equipment for what kinds of applications. Part II will appear in the September issue of HPC. There, we’ll examine, through the eyes of several ATL/AFP experts, the development and applications trajectories these fast evolving machines might take as they mature. Although opinions differ and, therefore, those of you who are considering capital purchases in this area may not find definitive answers to your ATL/AFP questions, the discussion will nevertheless be illuminating, and should help you determine what questions to ask of machine vendors.

Compression Molding
Composites One
pro-set epoxy laminate infusion tool assembly
Park Aerospace Corp.
Janicki employees laying up a carbon fiber part
Airtech
Release agents and process chemical specialties
CAMX 2024
Advert for lightweight carrier veils used in aero
MITO® Material Solutions
NewStar Adhesives - Nautical Adhesives
CompositesWorld

Related Content

Price, performance, protection: EV battery enclosures, Part 1

Composite technologies are growing in use as suppliers continue efforts to meet more demanding requirements for EV battery enclosures.  

Read More
Thermoplastics

TU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage

Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.

Read More
Aerospace

Thermoplastic composites welding advances for more sustainable airframes

Multiple demonstrators help various welding technologies approach TRL 6 in the quest for lighter weight, lower cost.

Read More
Filament Winding

Carbon fiber in pressure vessels for hydrogen

The emerging H2 economy drives tank development for aircraft, ships and gas transport.

Read More

Read Next

Automotive

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Composites One