Airbus foresees demand for 39,000 new passenger, freighter aircraft by 2040
Retirement of older aircraft to accelerate demand will be progressively driven by replacement, supporting the industry’s decarbonization objectives.
Share
Photo Credit: Airbus
In the next 20 years, Airbus (Toulouse, France) forecasts demand for air transport to progressively shift from fleet growth to the accelerated retirement of older, less fuel-efficient aircraft, resulting in a need for some 39,000 new-build passenger and freighter aircraft — 15,250 of these for replacement. As a consequence, by 2040, the vast majority of commercial aircraft in operation will be of the latest generation, up from some 13% today, considerably improving the CO2 efficiency of the world’s commercial aircraft fleets. The economic benefits of aviation extend beyond the sector, contributing around 4% to annual global GDP and sustaining some 90 million jobs worldwide.
This continues from the announcement on May 27, 2021 that Airbus is asking suppliers to prepare for the following aircraft production rates:
- A320 Family: Firm rate of 64/month by Q2 2023 and rate 70 by Q1 2024. Longer term, Airbus is investigating opportunities for rate 75 by 2025.
- A220 Family: Six/month in early 2022 and 14/month by mid-decade.
- A350 Family: Currently at five/month, projected to six/month by autumn 2022.
- A330 Family: Production remains at an average two/month.
While having lost nearly two years of growth during the COVID-19 pandemic, passenger traffic has demonstrated its resilience and is set to reconnect to an annual growth of 3.9%, driven by expanding economies and global commerce including tourism. The middle classes, who are the likeliest to fly, will grow in number by two billion people to 63% of the world’s population. The fastest traffic growth will be in Asia with domestic China becoming the largest market.
The demand for new aircraft will include around 29,700 small aircraft like the A220 and A320 Families, as well as about 5,300 in the medium aircraft category such as the A321XLR and the A330neo. In the large segment, covered by the A350, a need for some 4,000 deliveries is expected by 2040.
Cargo demand, boosted by e-commerce, is driven by an expected growth in express freight of 4.7% per year and a general cargo (representing about 75% of the market) growth of 2.7%. Overall, over the next 20 years, there will be a need for some 2,440 freighters, of which 880 will be new-build.
“As economies and air transport mature, we see demand increasingly driven by replacement rather than growth — replacement being today’s most significant driver for decarbonization,” says Christian Scherer, chief commercial officer and head of Airbus International. “The world is expecting more sustainable flying and this will be made possible in the short term by the introduction of most modern airplanes. Powering these new, efficient aircraft with Sustainable Aviation Fuels (SAF) is the next big lever. We pride ourselves that all our aircraft — the A220, A320neo Family, the A330neo and the A350 — are already certified to fly with a blend of 50% SAF, set to rise to 100% by 2030 - before making ZEROe our next reality from 2035 onwards.”
The global aviation industry has already achieved huge efficiency gains, as shown by the 53% decline in aviation’s global CO2 emissions since 1990. Airbus reports that its product range supports at least a 20% CO2 efficiency gain over previous-generation aircraft. In view of further ongoing innovations, product developments, operational improvements as well as market based options, Airbus asserts it is supporting the air transport sector’s target to reach net-zero carbon emissions by 2050.
Related Content
PEEK vs. PEKK vs. PAEK and continuous compression molding
Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.
Read MoreInfinite Composites: Type V tanks for space, hydrogen, automotive and more
After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.
Read MorePlant tour: Middle River Aerostructure Systems, Baltimore, Md., U.S.
The historic Martin Aircraft factory is advancing digitized automation for more sustainable production of composite aerostructures.
Read MorePlant tour: Spirit AeroSystems, Belfast, Northern Ireland, U.K.
Purpose-built facility employs resin transfer infusion (RTI) and assembly technology to manufacture today’s composite A220 wings, and prepares for future new programs and production ramp-ups.
Read MoreRead Next
VIDEO: High-volume processing for fiberglass components
Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.
Read MorePlant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France
Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.
Read MoreAll-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat
Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.
Read More