Composites One
Published

Carbon Revolution composite concept wheel for CH-47 Chinook expands benefits to aerospace

The Tier 1 automotive supplier concept wheel is 35% lighter than legacy aerospace versions and withstands durability needs, provides entry point into other vertical lift aerospace and military applications.  

Share

The virtually validated wheels are designed to withstand the CH-47’s maximum takeoff weight of 24,500 kilograms. Photo Credit, all images: Carbon Revolution

Carbon fiber automotive wheel supplier Carbon Revolution (Geelong, Australia) has demonstrated the strength and capabilities of its lightweight wheels in aerospace applications, having successfully delivered a virtually validated composite wheel for the Boeing (Chicago, Ill., U.S.) CH-47 Chinook helicopter.

The project, funded by an Australian Government Defence Innovation Hub contract, saw Carbon Revolution engineers design a prototype wheel which is 35% lighter than current wheels used on the Chinook, while still standing up to all of the rigors a military application demands in durability and accommodation of legacy hardware.

Carbon Revolution CEO, Jake Dingle says the program represented a significant opportunity for the company to demonstrate the benefits of its lightweight technology in aerospace applications, while emphasizing the strength of carbon fiber wheels.

“Our design and engineering team focused heavily on optimizing the global architecture to find the most efficient structure to support the loading within the design space envelope,” Dingle says. “Our concept wheel shows a 35% reduction in weight (60 pounds over six wheels) is achievable with potential to achieve a greater reduction, thanks to our lightweight carbon fiber technology, and our team’s work to optimize the wheel’s geometry to improve its efficiency.”

Dingle adds that the program represented a great opportunity for Carbon Revolution, a Tier 1 automotive supplier, to extend the application of its technology to the aerospace sector, which goes to significant lengths to save weight in aircraft design.

Render of the prototype Carbon Revolution carbon fiber CH-47 Chinook wheel.

Render of the prototype Carbon Revolution carbon fiber CH-47 Chinook wheel.

“These wheels could be supplied on new build CH-47 Chinook helicopters, and retrofitted to thousands of current CH-47s operating worldwide, but a real opportunity for us lies in other civilian and military vertical lift aircraft applications,” Dingle explains. “In particular, the weight savings for commercial operators would result in substantial savings in fuel costs.”

Carbon Revolution Chief Technology Officer (CTO), Dr. Ashley Denmead says the project demonstrated his team’s capabilities beyond automotive wheels. The wheels are designed to meet the CH-47’s maximum static vertical load requirement of more than 9,000 kilograms per wheel. By comparison, the requirement for one of Carbon Revolution’s ultra-lightweight wheels for a high-performance car is around 500 kilograms per wheel.

“This aerospace project brought a number of different design requirements which in many cases are far more rigorous than automotive,” Dr. Denmead points out. “The fact that we can meet these requirements and still make a wheel that’s much lighter is a testament to the strength of carbon fiber, and the talent of our team to design an extremely robust wheel.”

The virtual validation report delivered to the Defence Innovation Hub included results from finite element analysis (FEA), subscale testing and internal ply architecture design.

“We have also been considerate of other important aspects during the design process, such as in-service inspections and the manufacturability of the wheels,” Dr. Denmead continues. “These are crucial in ensuring the real-world viability of a program like this for us and our customers.”

The next phase of the program will involve Carbon Revolution producing and testing prototype wheels, with the possibility of expanding to other aerospace applications in the future.

Keyland Polymer Webinar Coatings on Composite & AM
world leader in braiding technology
Toray Advanced Composites hi-temperature materials
Custom Quantity Composite Repair Materials
Harper International Carbon Fiber
Gurit Advanced Composite Materials & Solutions
BARRDAY PREPREG
Composites One
CIJECT machines and monitoring systems
Release agents and process chemical specialties
Large Scale Additive Manufacturing
Airtech

Related Content

Manufacturing the MFFD thermoplastic composite fuselage

Demonstrator’s upper, lower shells and assembly prove materials and new processes for lighter, cheaper and more sustainable high-rate future aircraft.

Read More
RTM

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More
Carbon Fibers

Cryo-compressed hydrogen, the best solution for storage and refueling stations?

Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.

Read More
Bonding

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More

Read Next

Carbon Fibers

Carbon Revolution meets automotive market demand with lightweight carbon fiber wheels

Twenty-three-inch and 24-inch carbon fiber wheel offerings meet growing EV SUV and truck load requirements with 45% weight savings comparable to aluminum wheels.

Read More
CAMX

VIDEO: High-rate composites production for aerospace

Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.

Read More
Ketones

Plant tour: A&P, Cincinnati, OH

A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.

Read More
Ready-to-Ship Composites