Airtech
Published

Giant blades could spur more growth in offshore energy in U.S.

Sandia National Laboratories’ research is working on designs that are two and a half times longer than any existing wind blade.

Share

A new design for blades longer than two football fields could help bring offshore 50‐megawatt (MW) wind turbines to the U.S. and the world. Sandia National Laboratories’ research on the extreme‐scale Segmented Ultralight Morphing Rotor (SUMR) is funded by the Department of Energy’s (DOE) Advanced Research Projects Agency‐E long, two and a half times longer than any existing wind blade.

The team is led by the University of Virginia and includes Sandia and researchers from the University of Illinois, the University of Colorado, the Colorado School of Mines, and the National Renewable Energy Laboratory Corporate advisory partners include Dominion Resources General Electric Co. Siemens AG and Vestas Wind Systems.

 “Exascale turbines take advantage of economies of scale,”
 said Todd Griffith, lead blade designer on the project and technical lead for Sandia’s

Sandia’s previous work on 13‐MW systems uses 100‐meter blades (328 feet) on which the initial SUMR designs are based. While a 50‐MW horizontal wind turbine is well beyond the size of any current design, studies show that load alignment can dramatically reduce peak stresses and fatigue on the rotor blades. This reduces costs and allows construction of blades big enough for a 50‐MW system.

Most current U.S. wind turbines produce power in the 1‐ to 2‐MW range, with blades about 165 feet (50 meters) long, while the largest commercially available turbine is rated at 8 MW with blades 262 feet (80 meters) long.

“The U.S. has great offshore wind energy potential, but offshore installations are expensive, so larger turbines are needed to capture that energy at an affordable cost,” Griffith said.

Barriers remain before designers can scale up to a 50‐MW turbine — more than six times the power output of the largest current turbines.

“Conventional upwind blades are expensive to manufacture, deploy and maintain beyond 10‐15 MW. They must be stiff, to avoid fatigue and eliminate the risk of tower strikes in strong gusts. Those stiff blades are heavy, and their mass, which is directly related to cost, becomes even more problematic at the extreme scale due to gravity loads and other changes,” Griffith said.

He said the new blades could be more easily and cost‐effectively manufactured in segments, avoiding the unprecedented‐scale equipment needed for transport and assembly of blades built as single units.

The exascale turbines would be sited downwind, unlike conventional turbines that are configured with the rotor blades upwind of the tower.

SUMR’s load‐alignment is bio‐inspired by the way palm trees move in storms. The lightweight, segmented trunk approximates a series of cylindrical shells that bend in the wind while retaining segment stiffness. This alignment radically reduces the mass required for blade stiffening by reducing the forces on the blades using the palm‐tree inspired load‐alignment approach.

Segmented turbine blades have a significant advantage in parts of the world at risk for severe storms, such as hurricanes, where offshore turbines must withstand tremendous wind speeds over 200 mph. The blades align themselves to reduce cantilever forces on the blade through a trunnion hinge near the hub that responds to changes in wind speed.

“At dangerous wind speeds, the blades are stowed and aligned with the wind direction, reducing the risk of damage. At lower wind speeds, the blades spread out more to maximize energy production.” Griffith said.

Moving toward exascale turbines could be an important way to meet DOE’s goal of providing 20 percent of the nation’s energy from wind by 2030, as detailed in its recent Wind Vision Report.

Zone 5 CLEAVER
Airtech
Coast-Line Intl
Composites product design
NewStar Adhesives - Nautical Adhesives
HEATCON Composite Systems
CompositesWorld
Airtech
Advert for lightweight carrier veils used in aero
CompositesWorld
Carbon Fiber 2024
MITO® Material Solutions

Related Content

Mass Transit

Hexagon Purus opens new U.S. facility to manufacture composite hydrogen tanks

CW attends the opening of Westminster, Maryland, site and shares the company’s history, vision and leading role in H2 storage systems.

Read More
Hydrogen Storage

Forvia brand Faurecia exhibits XL CGH2 tank, cryogenic LH2 storage solution for heavy-duty trucks

Part of its full hydrogen solutions portfolio at IAA Transportation 2022, Faurecia also highlighted sustainable thermoplastic tanks and smart tanks for better safety via structural integrity monitoring.

Read More
Trends

Recycling end-of-life composite parts: New methods, markets

From infrastructure solutions to consumer products, Polish recycler Anmet and Netherlands-based researchers are developing new methods for repurposing wind turbine blades and other composite parts.

Read More
Pressure Vessels

Kite-based energy system aims for high-output, low-impact wind energy

Netherlands-based startup Kitepower’s Falcon airborne wind energy (AWE) system deploys a fiberglass-intensive kite to generate wind energy with a low ground footprint.

Read More

Read Next

Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Thermoplastics

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Airtech International Inc.