Graphene composite could help keep wings ice-free
A thin coating of graphene nanoribbons in epoxy developed at Rice University has proven effective at melting ice on a helicopter blade.
Rice University (Houston, TX, US) scientists have embedded graphene nanoribbon-infused epoxy in a section of a helicopter blade to test its ability to remove ice through Joule heating. The material could become an effective real-time de-icer for aircraft, wind turbines, transmission lines and other surfaces exposed to winter weather, according to a new paper in the American Chemical Society journal ACS Applied Materials and Interfaces.
In tests, the lab melted centimeter-thick ice from a static helicopter rotor blade in a minus 4-degree Fahrenheit environment. When a small voltage was applied, the coating delivered electrothermal heat, also known as Joule heating, to the surface, which melted the ice.
Rather than trying to produce large sheets of expensive graphene, the lab determined years ago that nanoribbons in composites would interconnect and conduct electricity across the material with much lower loadings than traditionally needed. Previous experiments showed how the nanoribbons in films could be used to de-ice radar domes and even glass, since the films can be transparent to the eye.
“Applying this composite to wings could save time and money at airports where the glycol-based chemicals now used to de-ice aircraft are also an environmental concern,” said chemist James Tour.
In Rice’s lab tests, nanoribbons were no more than 5% of the composite. The researchers led by Rice graduate student Abdul-Rahman Raji spread a thin coat of the composite on a segment of rotor blade supplied by a helicopter manufacturer and they then replaced the thermally conductive nickel abrasion sleeve used as a leading edge on rotor blades. They were able to heat the composite to more than 200 degrees Fahrenheit.
For wings or blades in motion, the thin layer of water that forms first between the heated composite and the surface should be enough to loosen ice and allow it to fall off without having to melt completely, Tour said.
The lab reported that the composite remained robust in temperatures up to nearly 600 degrees Fahrenheit.
Tour said the coating may also help protect aircraft from lightning strikes and provide an extra layer of electromagnetic shielding.
The Air Force Office of Scientific Research and Carson Helicopter supported the research.
Related Content
-
Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.
Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.
-
TU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage
Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.
-
Natural fiber composites: Growing to fit sustainability needs
Led by global and industry-wide sustainability goals, commercial interest in flax and hemp fiber-reinforced composites grows into higher-performance, higher-volume applications.