Ready-to-Ship Composites
Published

Huntsman researching opportunities for graphene-enhanced nanocomposites

The company is working on incorporating graphene into its Araldite epoxy resins.

Share

Huntsman Advanced Materials (The Woodlands, Texas) is researching opportunities for developing graphene-enhanced composite solutions, with a plan to incorporating graphene into its Araldite epoxy resins.

Huntsman’s research involves using a low temperature plasma (under 100 ̊C) patented by one of its partners, Haydale Composite Solutions (Ammanford, UK), which activates and allows modification of the nanomaterial’s surface energy and enables dispersion into a host medium, such as resin. Without using chemical acid treatments which can cause damage and degrade functional performance, this process maintains the structural integrity and mechanical strength of the final product.

Taking test plates cast from the activated graphene mixed into master batches of various concentrations of Araldite epoxy resins, Huntsman has been conducting a series of physical, electrical and thermal tests in the continued evaluation of the composite performance.

So far, an Araldite Euremelt hot melt resin and a general purpose epoxy resin have been specified to look at developing new prepreg applications using the former and advance other types of composite processes, such as filament winding and Resin Transfer Molding (RTM), with the latter.

Initial results have reportedly shown that these Araldite graphene reinforced resins offer greater dimensional and thermal stability in addition to improved impact resistance, properties that through further investigation could offer major performance benefits.

One particular area identified for future development is the market for electronic devices, where the electrical conductive properties of graphene-enhanced systems could help with electrostatic discharge and dispersion of excess heat, issues frequently linked to mobile phones and other portable devices.

Research into utilizing graphene’s electrical conductive properties in prepregs to improve the protection of composites against lightning strikes is also in place. In the future, it’s expected that there will be many application areas for structures prone to lightning strikes, such as aircraft, wind turbines and tall buildings.

“We continue to make good progress in collaborative developments and have been particularly impressed with the improvements already made in the areas of thermal, electrical and mechanical performance," says David Hatrick, European Technology Director of Huntsman Advanced Materials. 

The excellent thermal conductive properties identified mean that these graphene-enhanced nanocomposite systems should theoretically be able to manage the dissipation of heat generated by the exothermic curing of the resin more effectively in the casting process and tests continue in this area. Harnessing graphene to solve this issue could potentially reduce cracking or voids occurring due to expansion and this would allow large volumes of composite material to be cast.

Introducing graphene components into the composite mix could also deliver parts with high surface energy, improving the performance of coatings and paint finishes and reducing the need for primers.

As tests have also shown that the graphene-enhanced resin is stronger and lighter than traditional materials, there’s also scope to manufacture parts using less material, factors that could potentially move this technology from the high-end into the mass market for a wide range of applications – from sports equipment through to the mainstream automotive market.

Hatrick concludes, “This work is set to deliver the platform for a new range of graphene-enhanced Araldite resins that will benefit the industrial composites, automotive, aerospace and other markets besides. We are now focused on the further demonstration of these resins in composites manufactured with a range of typical processes used by our end customers.” 

Composites One
Harper International Carbon Fiber
BARRDAY PREPREG
Custom Quantity Composite Repair Materials
Toray public database prepreg materials
NewStar Adhesives - Nautical Adhesives
ColorForm multi-component injection
HEATCON Composite Systems
Airtech
recycle carbon fiber
CompositesWorld
Eliminate Quality Escapes  With LASERVISION AI

Related Content

Epoxies

From the CW Archives: Airbus A400M cargo door

The inaugural CW From the Archives revisits Sara Black’s 2007 story on out-of-autoclave infusion used to fabricate the massive composite upper cargo door for the Airbus A400M military airlifter.

Read More
Filament Winding

TU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage

Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.

Read More
Autoclave

Composites manufacturing for general aviation aircraft

General aviation, certified and experimental, has increasingly embraced composites over the decades, a path further driven by leveraged innovation in materials and processes and the evolving AAM market.

Read More
Epoxies

Nanopoxy, Nione jointly develop nanostructured epoxy resin

Epoxies featuring nanometric niobium pentoxide particles promote toughness, UV radiation resistance and other performance gains.

Read More

Read Next

Glass Fibers

VIDEO: High-volume processing for fiberglass components

Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.

Read More
Finishing & Fastening

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Sustainability

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Composites One