Monash Motorsport constructs FSAE autonomous, electric vehicle with ATL Composites materials
Composite are incorporated into the vehicle’s monocoque chassis, aerofoils, aerofoil endplates and other components to suit high aerodynamic loads, minimize mass and enhance efficiency for the globally competitive team.
As creativity and construction are revving up at Monash Motorsport, a student-run team in Clayton, Australia, who compete in some of the world’s largest engineering design competitions in vehicle design, ATL Composites (Molendinar, Australia) has become an important contributor of its composite products for the team’s ground-breaking designs, delivering strength, durability, a lightweight structure and high performance.
The Monash Motorsport team of close to 100 members is comprised of Monash University students from a range of faculties, including engineering, commerce, science, design and law. They are split into five separate departments working on different parts of the car including autonomous systems, business, dynamics, electrical systems and structures.
Since 2000, Monash Motorsport has steadily improved in performance on and off the track, culminated in FSAE Australasia and in European Formula Student competitions. The team has also developed what is reported to be Australia’s first competition-ready Formula Student Driverless car. Their sights are currently set on the top of the Driverless class of this year’s next competition, FSAE-Australasia, occurring in December 2022 at Winton Raceway.
“We are also working towards competing in Europe in 2023 at various Formula Student competitions there,” Michaela Sykes-Turner, head of business for Monash Motorsports, says. “In Europe there are a large number of different FSAE competitions each in a different country, so it would be a great opportunity for the team to gain competition experience, see different design ideas and showcase Australian engineering on a world stage.”
Crucial to the team’s current vehicle’s lightweight yet sturdy construction is ATL Composites’ range of products including twill weave carbon fiber, Kinetix R118 infusion resin and H126 hardener, infusion tubing and Divinycell H60 foam in various thicknesses.
“They are using the carbon [fiber], resin and core materials for the manufacture of their aerodynamics package, which may include the aerofoils, aerofoil endplates and their undertray and various flow conditioning devices,” Justin McDermott, technical engineer at ATL, notes. “Kinetix R118 infusion resin is ideal for their purpose due to the low viscosity, allowing for easy infusion and great mechanical properties, with the hardener providing good mechanical properties with a short manufacturing time. This, in combination with our carbon [fiber] products and Divinycell PVC core, allows for a strong, lightweight construction of aerodynamic components that suit the high aerodynamic loads these FSAE vehicles experience.”
The Monash Motorsports teams have competed each year in the Australian FSAE and have competed overseas in Europe every two years.
“In Europe we often compete at FSUK [Formula Student UK], FSA [Formula Student Austria] and the largest and most prestigious competition, FSG [Formula Student Germany],” Sykes-Turner says. “Over our 20-year history we have worked our way up the world ranking, with 2018 Europe and 2019 Australian competition results putting us at first in the world for combustion and third in the world for electric vehicle racing. Since then, we retired our combustion car to focus entirely on electric and autonomous vehicle racing.”
According to Sykes-Turner, FSAE competitions distribute a new rule set each year, consisting of up to 200 pages of detailed design parameters.
“An example of some of our rules are rule boxes, where you can design anything you want within that box,” she notes. “For example, our aerodynamics package must fit into a set of rule boxes defined in the rule book, or the power rule that states we cannot draw more than 80 kilowatts of power from our accumulator — the main battery pack of the vehicle.”
Vehicles, too, are judged on their performance. “This means designing for minimum mass, greatest downforce, maximum efficiency and more,” Sykes-Turner says. “This is why we contacted ATL composites, because using lightweight carbon fiber composites means we can minimize the mass of our vehicle while still abiding by the strength requirements defined by rules.
“While we aren't allowed to increase power over 80 kilowatts, decreasing mass will help our car to drive and accelerate faster with more efficiency. We use carbon fiber for the entirety of our aerodynamics package, as well as the monocoque chassis of our car since it has such great material properties. [Specifically] with ATL products, we can use high-quality carbon fiber, infuse it with resin for strength and use lightweight foam interior for minimal mass.”
The team’s current vehicle is their most ambitious yet, according to Monash Motorsport. Named M22, it will be their first all-wheel drive car with outboard motors and custom gearboxes in each wheel. Sykes-Turner says it is designed to maximise downforce, with a more aggressive aerodynamics design than previous years. The team is also working on custom motors to replace the team’s off-the-shelf motors being used currently, which would go with a custom inverter design being worked on.
“This is the vehicle we will compete with at the Australian competition at the end of the year, and hopefully in Europe in 2023,” she points out. “We are also working on getting the autonomous systems reliably on the car, so that we can compete in autonomous competition in Europe next year.”
Related Content
Jeep all-composite roof receivers achieve steel performance at low mass
Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.
Read MorePlant tour: Joby Aviation, Marina, Calif., U.S.
As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.
Read MoreInfinite Composites: Type V tanks for space, hydrogen, automotive and more
After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.
Read MoreMcLaren celebrates 10 years of the McLaren P1 hybrid hypercar
Lightweight carbon fiber construction, Formula 1-inspired aerodynamics and high-performance hybrid powertrain technologies hallmark this hybrid vehicle, serve as a springboard for new race cars.
Read MoreRead Next
Two-time F1 champion Fernando Alonso, SimplyEV debut Kimoa e-bike at Miami Grand Prix
The Formula One driver’s sustainable mobility Kimoa brand is debuting its fully customizable carbon fiber e-bike powered by 3D printing firm Arevo.
Read MoreBercella, Formula Seven target motorsport innovation with natural fiber composite developments
AmpliTex flax fiber used to develop Formula SAE single-seater racing seat for better resistance, vibration absorption and reduced environmental impact.
Read MoreCFRP planing head: 50% less mass, 1.5 times faster rotation
Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.
Read More