Composites One
Published

MTU Aero Engines highlights potential hydrogen applications

Since the industry’s move toward emission-free aviation, the German engine manufacturer has been developing three additional concepts for hydrogen application. 

Share

MTU Aero Engines

Photo Credit: MTU Aero Engines

As the industry moves toward emission-free aviation, MTU Aero Engines (Munich, Germany) welcomes the ZEROe concepts from European aircraft manufacturer Airbus. “Hydrogen is a highly attractive future option for us as engine producers as well,” says MTU Chief Operating Officer Lars Wagner. In an effort to realize additional emission-free technologies, MTU is said to see three possible uses for hydrogen, including converting the gas to sustainable aviation fuels (SAFs), converting it into electricity by means of a fuel cell and further development of the gas turbine.

According to MTU, converted to SAFs, hydrogen could be dropped into existing aircraft and engines right away. “Direct combustion of liquid hydrogen in gas turbines is possible in technical terms, too,” says Dr Stefan Weber, senior vice president Technology and Engineering Advanced Programs at MTU, highlighting the second possible use for hydrogen. That would require some adjustments in the engine, especially the combustion chamber, which Weber thinks could be done in just a few years. By contrast, much larger challenges await for infrastructure and aircraft manufacturers, since companies will have to find ways to provide and transport the liquid hydrogen and then carry it along inside appropriate tanks inside the aircraft.

In the long-term, MTU says it is relying on a third option, converting hydrogen into electricity via fuel cell. This application is also described by the MTU experts in its Technology Roadmap for achieving emissions-free flight. This technology promises almost zero emissions, but it is still in the early stages of development in aircraft propulsion applications. “We call our fuel cell concept the “flying fuel cell.” We have an established team of experts working on it in Munich,” Weber explains. In August, MTU teamed up with the German Aerospace Center (DLR) to launch a cooperative project with the aim of demonstrating the new technology in a Do228 turboprop airliner. 

MTU’s development work is also focusing on the further development of the gas turbine to leverage the full amount of potential available. The concept is said to have been optimized and combined with revolutionary drive concepts which significantly improve the cycle, and considerably reduce all emissions. MTU is currently focusing on what is known as a WET (Water-Enhanced Turbofan) engine. This concept is said to reduce fuel consumption by more than 15% regardless of fuel type, considerably lowers all emissions — including NOx levels — and, according to initial estimates, also reduces formation of contrails.

Lars Wagner explains: “We need both propulsion concepts — an optimized gas turbine combined with WET technology and fuel cells — because they have different areas of application.” According to the company, the hydrogen-powered fuel cell is especially suitable for short- to medium-haul aircraft, as it requires less tank volume than in the case of long-haul aircraft. For these types of planes, gas turbines will continue to make sense for the foreseeable future. “But in that case, using SAFs,” Dr Stefan Weber sums up, “Realizing the new technologies, and reaching our climate targets, will depend to a crucial degree on receiving appropriate funding, both nationally and at the European level.”

Compression Molding
pro-set epoxy laminate infusion tool assembly
Composites One
Janicki employees laying up a carbon fiber part
Park Aerospace Corp.
Carbon Fiber 2024
Industrial CNC Routers
CAMX 2024
Release agents and process chemical specialties
Composites product design
MITO® Material Solutions
Advert for lightweight carrier veils used in aero

Related Content

Nanomaterials

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Out of Autoclave

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More
Pressure Vessels

Carbon fiber in pressure vessels for hydrogen

The emerging H2 economy drives tank development for aircraft, ships and gas transport.

Read More
Prepregs

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More

Read Next

Fastening / Finishing

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Composites One