Composites One
Published

CTC’s CEO on digital manufacturing for composites

The Composite Technology Center (Stade, Germany) advances composites production and sustainability through Industry 4.0 working groups.

Share

Prof. Dr. Axel Herrmann is not only the CEO of the Composite Technology Center (CTC) in Stade, the heart of Germany’s carbon fiber composites CFK Valley, he is also CTO of the CFK Valley e.V. trade association, director of the Faserinstitut Bremen (FIBRE) and part of the team behind the ECOMAT materials technology development lab, also located in Bremen, Germany. Herrmann has helped to create a unique entity in the CTC, one where aerospace and nonaerospace applications benefit from continued innovations in composites. His continued vision for CTC provides leadership for its mix of talented engineers and technicians to push composites innovations in design, material development and reuse, processes, assembly, recycling and digital manufacturing. Speaking of where CTC’s efforts are headed currently, Herrmann notes,  “Composites can no longer compete only on performance. They must also offer superior production and sustainability.”

“When we founded the CTC in 2001,” Herrmann continues, “our vision was to achieve more optimization in composites manufacturing. We have done this, installing flowlines like in the automotive industry and various types of automation. Now, we look to the next step, to regulate the process.” Herrmann notes that, today the process is only steered, “we don’t have complete control.” He explains that to achieve full control, “we need to measure a lot of parameters and then give this data to predictive controlling systems. These systems alert that you have a deviation in the part production process and you may be able to alter a later process step to reduce this deviation, rather than having to repair or discard the part. We then can go back into the process where the part deviation occurred and change the parameters to prevent this error in the future. Thus, at the end of production, we get only quality parts.”

Herrmann relates that he completed an analysis of the RTM process and identified more than 200 parameters. “We need to measure and control all of these parameters,” he says, “and we must also understand possible interactions and the resulting impacts. We need to learn so much more about how to collect and use this data in order to achieve predictive control.”

However, some of this education can be achieved through computer simulation and modeling. “We need to simulate all of our processes,” Hermann asserts. “In the past, we didn’t do this as much. But now we need to learn how to measure all of the process parameters and understand the interactions, so the modeling is necessary. We have a lot of work to do.”

The work Herrmann outlines is quite large in scope. Is there an overall plan for this within the CFK Valley organization? “We have decided on a working group,” Hermann responds, “and we are working to develop a plan with milestones.” He notes that the CFK Valley trade association was founded in 2004 because “it was not possible for just one company to do all of the development needed.” Hermann says now there are multiple working groups; for example, one to do simulation, one to do measurements. “The first step is to agree on a standardized definition of what Industry 4.0 is for composites,” he explains. “Then, we will set our initial goals and milestones.”

See also "Composites Technology Center and Plataine partner to create "Factory of the Future".

Park Aerospace Corp.
Nanoparticles filled epoxy adhesives
Composites One
Vacuum and Controlled Atmosphere furnaces
Fire Retardant Epoxies
Wickert Hydraulic Presses
Ad showing Janicki CNC Mill machining part in tool
NewStar Adhesives - Nautical Adhesives
Keyland Polymer Webinar Coatings on Composite & AM
Large Scale Additive Manufacturing
Visual of lab with a yellow line
CompositesWorld

Related Content

COMPINNOV TP2 project promotes use of thermoplastics in aerospace

Completed in 2023, COMPINNOV TP2 explored thermoplastic composites, enhancing the understanding between prepregs and production methods to foster the potential for French aerospace innovation.

Read More
Glass Fibers

Novel composite technology replaces welded joints in tubular structures

The Tree Composites TC-joint replaces traditional welding in jacket foundations for offshore wind turbine generator applications, advancing the world’s quest for fast, sustainable energy deployment.  

Read More
Aerospace

From the CW Archives: Airbus A400M cargo door

The inaugural CW From the Archives revisits Sara Black’s 2007 story on out-of-autoclave infusion used to fabricate the massive composite upper cargo door for the Airbus A400M military airlifter.

Read More
Out of Autoclave

SmartValves offer improvements over traditional vacuum bag ports

Developed to resolve tilting and close-off issues, SmartValves eliminate cutting through vacuum bags while offering reduced process time and maintenance.

Read More

Read Next

Carbon Fibers

CW Plant Tour: Composite Technology Center, Stade, Germany

A cornerstone of Germany’s CFK Valley, CTC pushes composites forward via automation, recycling, digital thread-based manufacturing and more.

Read More
Filament Winding

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
Ketones

Plant tour: A&P, Cincinnati, OH

A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.

Read More
Composites One