Release agents and process chemical specialties
Published

Evonik study researches best resins for surface quality and shrinkage control

New white paper authored by Eike Langkabel, Sebastian de Nardo, and Jens Bockhoff, examines the best resin formulations for composites used in automotive part production, both structural parts and body panels.

Share

A new white paper from Evonik Resource Efficiency GmbH (Marl, Germany), authored by Eike Langkabel, Sebastian de Nardo, and Jens Bockhoff, examines the best resin formulations for composites used in automotive part production, both structural parts and body panels. Specifically, the report takes a deep dive into the behaviour of various curatives and their effects on resin shrinkage, and compares epoxy and polyurethane formulations.

Residual stress is a significant problem in composites processing, say the authors, caused by chemical shrinkage of the matrix due to crosslinking of molecules, mismatch of thermal expansion or contraction among fibers and matrix (a cause of fiber print-through) and viscoelastic relaxation during fabrication. These phenomena are strongly coupled, and can lead to defects in the finished part like shape distortion, micro cracking, delamination, reduced mechanical strength, aging and wavy surfaces. And, for automotive composites, resin systems face conflicting demands: fast cycle times, which can produce residual stress, and Class-A surface quality, which decreases with increasing stress.

First, the researchers cured samples of various epoxies, using a bisphenol A diglycidyl ether (DGEBA) cured with isophorone diamine. Using a variety of test methods, including volume diatometry, DIN EN ISO 3521 (Pyknometer/Buoyancy Scale) and the pVT method (developed by RWTH Aachen University), the overall shrinkage behavior of the epoxy was determined to be 2.3-2.4%. Then, using thermomechanical analysis (TMA), changes in length were measured in epoxy samples, with the results indicating that the changes in dimension (shrinkage/expansion) are due to relaxation processes and the release of “frozen-in” free volume within the samples.

More tests were run using a range of reactive amines, the curing agents used in epoxy processing. Samples were created with cycloaliphatic, araliphatic and aliphatic amines, to determine their effects on shrinkage, and a variety of reactive diluents were also investigated, with the samples cured for 30 minutes at 120°C. The cycloaliphatic structures showed the lowest shrinkage (2.4%), while aliphatic structures show higher shrinkage. The longer the aliphatic chain length, the higher the shrinkage. And, the longer the aliphatic chain length (higher mobility) of the reactive thinners, the more shrinkage was observed, up to 4.5%.

The final part of the study was to produce composite parts using the resin transfer molding (RTM) process, to actually observe shrinkage and resultant part surface quality. All parts were made with the same fiber architecture, a quasi-isotropic layup using non-crimp fabrics, and were cured for 10 minutes at 120°C. The results verified that an epoxy resin formulation containing cycloaliphatic structures was superior over highly formulated resin systems that contain open chain aliphatic components, and produced a part with very little surface waviness, particularly when the part was made with an additional in-mold-coating (IMC) using the same resin formulation.

To further reduce shrinkage effects, say the authors, there is another approach: polyurethane prepreg. Evonik’s polyurethane system, which is based on aliphatic diisocyanate with a uretdione structure, cures quickly while still offering good mechanical properties and high toughness, and is stable with room-temperature storage.  Because it behaves like a thermoplastic before cure, in its prepolymer state, it can be easily preformed, yet after cure it has thermoset properties. In terms of shrinkage, the paper compares epoxy cured with cycloaliphatic amine (IPD/DGEBA system, 2.4% shrinkage) to Evonik’s new resin, which exhibited less than 1% shrinkage, attributed to the chemistry and process differences.  

The authors showed that using polyurethane prepreg in a simple PCM (Prepreg Compression Molding) process yields parts with surface qualities in the same range as the optimized epoxy formulations, while noting that surface properties in general are also linked to the fabrication process, the fiber architecture and the integrated surface finishing technologies  (i.e., IMC) used.

Read the entire technical paper here.
Eastman Machine Company CAMX Booth T25
Release agents and process chemical specialties
3D industrial laser projection
An ad for Formnext Chicago on April 8-10, 2025.
PIONEERING COMPOSITE MANUFACTURING SOLUTIONS
Composites product design
Industrial CNC Routers
HEATCON Composite Systems
NewStar Adhesives - Nautical Adhesives
Airtech
CompositesWorld
TFP is now James Cropper

Related Content

Sustainability

ASCEND program update: Designing next-gen, high-rate auto and aerospace composites

GKN Aerospace, McLaren Automotive and U.K.-based partners share goals and progress aiming at high-rate, Industry 4.0-enabled, sustainable materials and processes.

Read More
Pressure Vessels

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
ATL/AFP

Protecting EV motors more efficiently

Motors for electric vehicles are expected to benefit from Trelleborg’s thermoplastic composite rotor sleeve design, which advances materials and processes to produce a lightweight, energy-efficient component.

Read More
Trends

Cryo-compressed hydrogen, the best solution for storage and refueling stations?

Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.

Read More

Read Next

Additive Manufacturing

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Defense

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Release agents and process chemical specialties