Composites One - Distributor
Published

Follow the leader — or maybe not

The easy explanation for lack of proliferation of carbon composites is the “not invented here” syndrome.

Dale Brosius , Contributing Writer, Institute for Advanced Composites Manufacturing Innovation (IACMI)

Share

In June 2013, I posed the question whether any other automotive OEM would follow BMW’s (Munich, Germany) lead in capturing the entire carbon fiber composites supply chain, as the company has done for its i-Series and, more recently, its flagship 7-Series, with the Carbon Core concept. Three years later, the answer seems to be a resounding “no.” Based on my observations, replication by additional OEMs doesn’t appear to be on the horizon, either. Does this suggest that BMW may have erred in this endeavor?

I don’t think so. The drivers for making vehicles lighter have not changed. Because others don’t quickly follow, many innovations take a lot of time to proliferate, or to be adopted by competitors. I’ve spent a lot of time with the folks at BMW the past two years, visited their composites manufacturing lines, and it’s clear they have learned much that is difficult to replicate without actually living through the experience.

The “intelligent lightweighting,” as I have termed the Carbon Core concept indigenous to the 7-Series platform, certainly arose out of BMW’s experience on the i3 and i8 platforms. The rumored i5 vehicle is likely to have more metal and fewer composites than the other i-Series vehicles, yet will be both weight and cost-effective, if produced. BMW is still fine-tuning the balance between composites and metals.

The BMW example is far from unique. Glass-reinforced phenolic disc brake pistons were first introduced in the US market between 1968 and 1970 as a replacement for steel pistons. They managed to gain significant traction in the US during the following two decades, but European OEMs would not embrace the idea. In the mid-1990s, I was calling on European brake systems companies, many with US affiliates that used phenolic, trying to convince them that there was a quarter century of empirical evidence in support of composite pistons, but I kept hearing excuses: “Our speeds are much higher” or “Our mountains are too steep.”

Granted, Germany did have, on average, roads with higher speed limits, but the highest paved mountain road in Europe is in Spain at 3,384m/11,102 ft, and phenolic pistons had demonstrated superior performance to steel in the US on descent from Pikes Peak in Colorado, with a top paved elevation of 4,300m/14,110 
ft. It wasn’t until the late 1990s that General Motors’ (Detroit,
 MI, US) European subsidiary, Opel AG (Rüsselsheim am Main, Germany), began using phenolic pistons, and they continue to gain market share in Europe. It only took about 30 years for this to happen. Conversely, there are numerous composite components on European vehicles that have never made the transition to US or Japanese platforms.

Aerospace has similar stories. The Airbus (Toulouse, France) A320-200 made its first commercial flight in 1988 with a fully composite empennage. Seven years later, The Boeing Co.’s (Chicago, IL, US) 777 flew with a similar construction. This was relatively quick by comparison to the auto brake piston example. The time span between the first flight of the carbon fiber fuselage on the Boeing 787 and the similar Airbus A350 was only three years and three months. By any account, this is exceptionally fast. However, the first FAA-certified, carbon fiber pressurized fuselage appeared on the Wichita, KS, US-based Beech Aircraft Starship in 1989, delivered fully 22 years before the first commercial flight of the 787. While the Starship was not a long-term commercial success, the technology has been well proven — and there are
a handful of registered aircraft still operated by private owners. For those well-versed in aerospace history, this technology was first demonstrated on LearAvia’s (Reno, NV, US) all-composite LearFan 2100 in 1981, although that aircraft was never certified, due to problems unrelated to the composite components.

The easy explanation for this lack of proliferation is the “not invented here” syndrome, and, to be sure, that plays a big role. Leadership at various companies define materials strategy in different ways, and every engineer needs to be certain that a design will meet required performance parameters. Perhaps an alternate approach to that pursued by BMW can achieve the same result — a number of automotive OEMs have established close relationships with carbon fiber suppliers and Tier 1 molders, each of which will have to make large investments to fulfill volume requirements. Whether this strategy enables each OEM to meet the required emissions or fuel-economy requirements in a timely fashion remains to be seen. In aerospace, Bombardier has already taken the leap, using carbon fiber wing structures on its CSeries single-aisle aircraft. Will Airbus and Boeing follow? So far, the response by both has been to aggressively price the A320 and 737 to keep Bombardier at bay. But long term? I’m guessing they will follow. Eventually .…

Institute for Advanced Composites Manufacturing Innovation (IACMI)

Toray Advanced Composites hi-temperature materials
Master Bond epoxy adhesives for bonding
world leader in braiding technology
Custom Quantity Composite Repair Materials
Composites One - distributor
Industrial CNC Routers
CompositesWorld
Real Time Resin Degassing Measurement

Related Content

Plant Tours

Plant tour: Spirit AeroSystems, Belfast, Northern Ireland, U.K.

Purpose-built facility employs resin transfer infusion (RTI) and assembly technology to manufacture today’s composite A220 wings, and prepares for future new programs and production ramp-ups.

Read More
Epoxies

Composites manufacturing for general aviation aircraft

General aviation, certified and experimental, has increasingly embraced composites over the decades, a path further driven by leveraged innovation in materials and processes and the evolving AAM market.

Read More
Aerospace

Welding is not bonding

Discussion of the issues in our understanding of thermoplastic composite welded structures and certification of the latest materials and welding technologies for future airframes.

Read More
Automotive

ASCEND program update: Designing next-gen, high-rate auto and aerospace composites

GKN Aerospace, McLaren Automotive and U.K.-based partners share goals and progress aiming at high-rate, Industry 4.0-enabled, sustainable materials and processes.

Read More

Read Next

Sustainability

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Plant Tours

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More
Compression Molding

VIDEO: High-volume processing for fiberglass components

Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.

Read More
Composites One - distributor