Airtech
Published

How composites have become a necessity

Composites used to be one of many material options across industries and applications, but that's not the case anymore.

Share

Joby Aviation composites-intensive all-electric air taxi

Joby Aviation’s all-electric vertical takeoff and landing (eVTOL) aircraft utilizes composites extensively throughout its build. The necessity of lightweighting the aircraft makes composites its only option. Read more about it in CW’s plant tour of Joby. Photo Credit: Joby Aviation

Compared to legacy materials like wood, iron, steel, aluminum and concrete, composite materials — and the composites industry — are relatively young. You can trace the current era of composites manufacturing back to the late 1950s, although it wasn’t until the 1990s and early 2000s that the industry really began to mature and grow.

Composites, being new and quasi-isotropic and even “weird” to some engineers, grew early on if evangelists could convince their customers to give composites a chance — mainly by displacing a legacy material in an existing application, particularly if that application might benefit from the lightweight/high-strength properties composites offer.

A good example of this are golf club shafts, which for decades were made almost exclusively with steel or aluminum. In 1969, Frank Thomas developed the first carbon fiber golf club shaft, which evolved to become a standard material option for golfers throughout the world. It also triggered application of carbon fiber in other sporting goods products dominated by legacy materials. Think tennis rackets, hockey sticks, fishing rods and bicycles.

Even in aerospace, which has famously embraced use of composite materials, growth has been incremental and dependent on legacy material displacement. This led to the infamous phrase “black aluminum” — used to describe the practice of replacing an aluminum part with a carbon fiber composite part (black in color).

Anyhow, in the early days of composites manufacturing, as any industry veteran will tell you, the industry and its proponents often were begging for applications, not choosing. So, design inefficiencies, incremental growth and fits and starts were par for the course and accepted as the part of the growing-up process. In this way, composites became a material option in a variety of applications.

Then, in the early 2000s, Boeing and Airbus took the Great Leap. Each decided to launch a new wide-body aircraft program — 787 and A350 respectively— that would use carbon fiber composites at an unprecedented scale, in primary structures for the wings, torsion box, fuselage, tail and more. This was aluminum replacement on a scale unlike any we’d seen and seemed to herald a paradigm shift in commercial aircraft materials use.

Around this same time, the wind energy industry began its modern era, with wind turbine blade length growing rapidly to meet the needs of rapidly increasing turbine power capacities. Composites quickly displaced legacy materials in blades that became increasingly strength- and weight-driven.

However, in other markets, such as automotive, composites usage was still dependent on incremental displacement of steel and aluminum. With the exception of wind turbine blades, composites survived only by being one of several material options in a variety of markets and applications.

That’s all changing, however. Over the last five years, we have seen the growth — and birth, in one case — of applications where composites are more than just an option. They are the one and only option. Not only that, but I would argue that these are applications that cannot exist without composites.

Example 1: Advanced air mobility (AAM) aircraft coming for the air taxi market. This is the birth. The OEMS serving this market are designing and producing all-electric aircraft that demand a 100% commitment to vehicle lightweighting to maximize range. Composites are the only material option here for primary structures and rotor blades.

Example 2: Hydrogen storage. The hydrogen economy is moving quickly to high-growth mode, putting pressure on the entire supply chain, particularly demand for carbon fiber pressure vessels for hydrogen transport and on-vehicle storage. Again, composites are the only material option here.

Example 3: Wind blades. Use of composites is not new here, but it’s important to note that wind blades are the largest consumer (by far) of carbon fiber in the world. As blades get longer, demand for carbon fiber in spar caps will only increase. Once again, composites are the only option here.

Example 4: Aerospace/space. The 787 and the A350 have made composites the de facto material of choice in aerostructures manufacturing. The question for any new aircraft program will be where and how to use composites, not whether or not to use composites.

In short: Composites have evolved from optional to necessary. We need to start thinking that way.

expanded metal foils and polymers
NewStar Adhesives - Nautical Adhesives
Large Scale Additive Manufacturing
Airtech
CIJECT machines and monitoring systems
IRIS Ai-enabled Camera
CompositesWorld
HEATCON Composite Systems

Related Content

Wind/Energy

MingYang reveals 18-MW offshore wind turbine model with 140-meter-long blades

The Chinese wind turbine manufacturer surpasses its 16-MW platform, optimizes wind farm construction costs for 1-GW wind farms.  

Read More
Wind/Energy

Achieving composites innovation through collaboration

Stephen Heinz, vice president of R&I for Syensqo delivered an inspirational keynote at SAMPE 2024, highlighting the significant role of composite materials in emerging technologies and encouraging broader collaboration within the manufacturing community. 

Read More
Trends

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Pressure Vessels

Recycling end-of-life composite parts: New methods, markets

From infrastructure solutions to consumer products, Polish recycler Anmet and Netherlands-based researchers are developing new methods for repurposing wind turbine blades and other composite parts.

Read More

Read Next

Design/Simulation

Modeling and characterization of crushable composite structures

How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.

Read More
Aerospace

VIDEO: High-rate composites production for aerospace

Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.

Read More
Application

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
Airtech International Inc.