Hybrid Enhanced Combat Helmet enters final testing phase
The U.S. Army and Marine Corps are conducting final validation testing of the U.S. military’s next-generation — and radically new — thermoplastic composite Enhanced Combat Helmet (ECH).
The U.S. Army and Marine Corps are conducting final validation testing of the U.S. military’s next-generation — and radically new — combat helmet at the Army Research Laboratory’s Aberdeen Proving Ground in Maryland. Testing on the Enhanced Combat Helmet (ECH), is expected to last 6 to 12 months. The previous-generation Advanced Combat Helmet (ACH) — currently in use by most U.S. combat troops — is made primarily of Kevlar and phenolic resin. The ECH will be the first to incorporate thermoplastic resin in its construction. Military sources tell HPC that the ECH comprises a carbon-fiber inner cage overmolded with a preform made from Spectra ultrahigh-molecular-weight polyethylene (UHMWPE), supplied by helmet development partner Honeywell Advanced Fibers and Composites (Colonial Heights, Va.).
“The ECH involves a change in materials, a change in the manufacturing process and a change in the specifications,” says Honeywell’s armor industry technical leader Lori Wagner. While the UHMWPE outer hemisphere imparts the energy-absorbing antiballistic behavior, the carbon inner cage is designed to resist deformation, offering better local-impact protection for the wearer. The design reportedly results in a 10 percent improvement in ballistic protection while reducing helmet weight.
The military is expected to issue production contracts to several manufacturers. The helmet will be made using an out-of-autoclave, automated compression-style press. Automation is expected to reduce the cost of making the ECH by 10 to 15 percent compared to the ACH.
Related Content
-
“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
-
Industrializing additive manufacturing in the defense/aerospace sector
GA-ASI demonstrates a path forward for the use of additive technologies for composite tooling, flight-qualified parts.
-
US Air Force selects Integris Composites ballistic body armor
Cratus Wave armor is thin, lightweight and reduces heat stress, providing buoyant personal protection for the 582nd Helicopter Group.