Matrices: Carbon, metal and ceramic
Perhaps the most exotic matrix, in part because it is neither thermoset nor thermoplastic, is pyrolized and densified noncontinuous carbon, which forms the matrix in carbon/carbon (C/C) composites. C/Cs withstand extremely high temperatures – nearly 1650°C/3000°F on space shuttle components – and also find use in
Perhaps the most exotic matrix, in part because it is neither thermoset nor thermoplastic, is pyrolized and densified noncontinuous carbon, which forms the matrix in carbon/carbon (C/C) composites. C/Cs withstand extremely high temperatures – nearly 1650°C/3000°F on space shuttle components – and also find use in aircraft and race car braking components, missile engines and exhaust nozzles, which can experience short-term service temperatures as high as 2760°C/5000°F.
Metals (e.g., aluminum, titanium and magnesium) and ceramics (such as silicon carbide) are used as matrices, as well, for specialized applications, such as spacecraft components, where minimal CTE and an absence of outgassing are required. They also are used in engine components, where polymer matrices cannot provide the extremely high temperature resistance required.
Related Content
-
Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.
Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.
-
Cryo-compressed hydrogen, the best solution for storage and refueling stations?
Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.
-
Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.