Ready-to-Ship Composites
Published

SAMPE 2018 keynote looks to the composites future

The SAMPE 2018 general session featured the announcement of the top three papers presented at the conference, and a keynote by Carmelo Lo Faro, president, Solvay Composite Materials (Alpharetta, FA, US).

Share

The SAMPE 2018 general session featured the announcement of the top three papers presented at the conference, and a keynote presented by Carmelo Lo Faro, president, Solvay Composite Materials (Alpharetta, GA, US).

The top three papers were:

  • First place: “Fabrication of Out-of-Autoclave Prepreg with High Through-Thickness Permeability by Polymer Film Dewetting,” Sarah G. K. Schechter, Timotei Centea and Steven R. Nutt
  • Second place: “Warpage of Thin-Gauge Compression-Molded Panels with Discontinuous Long Fiber Carbon/Polyetheretherketone,” Caroline Collins and Pascal Hubert
  • Third place: “Recycling of Amine/Epoxy Composites Using Chemical Treatment at Atmospheric Pressure,” Yijia Ma, Travis J. Williams and Steven R. Nutt

For his keynote, Lo Faro surveyed the materials evolution, from copper in 8700 BC, straw/mud bricks in 2500 BC, steel in 1851 AD, aluminum in 1889, titanium in 1950, to the evolution of composites in the 1950s and 1960s, followed by the growth of aerospace technologies (1970-2010) in commercial and defense-related breakthroughs.

With that as context, he spoke about three ‘eras’ of composites: The lightweighting era (1970-1995), the manufacturing era (1995-today) and the next era, which he deemed the industrialization and simulation era.

He pointed out that automation of manufacturing processes has been a significant enabler of composites construction in the commercial aircraft structures arena. Today’s infusion technology enhances affordability and results in a viable manufacturing rate, he added, citing Bombardier’s (Montreal, QC, Canada) C Series wing, made with high-pot-life resin and non-crimp fabric. He highlighted the CFM LEAP engine fan blade, made using toughened resin and 3D woven preforms; and Moscow, Russia-based Irkut’s MS-21 wing, made via automated fiber placed dry tape infused with toughened resin. “I don’t believe aluminum and titanium accomplished as much in their first 30 years as composites have in their first 30 years,” he argued.

Can we claim victory? Lo Faro asked. In short, he answered, no — a lot more can be done. To grow further, composites must deliver more value, he said. Future challenges and opportunities might include press forming, thermoplastic composites for large structures, additive manufacturing, joining, simulation, managing complexities, and, of course, cost.

LoFaro did inject “a little caveat — the hype cycle,” where interest becomes exaggerated enthusiasm (hype), and then, “after a time of disillusionment,” finds its place in reality. The future, he said, will be driven by industrial scale and economies; convergence of aerospace and automotive practices; and the increased importance of production systems vs. end-products.

Moving on to thermoplastic composites, Lo Faro discussed PEEK, PEKK, PAEK and continuous compression molding. Thermoplastic composites are not new, he reminded his listeners. Further, he expects growth in the 21st Century to be enabled by maturation of cost-effective, automotive-like manufacturing processes developed in the past 15 years: notably compression molding, continuous compression molding and stamp forming. If the aerospace supply chain is to develop and build large thermoplastic composite structures then it must mature out-of-autoclave molding/forming systems capable of rapid heating/cooling.

Lo Faro also touched on additive manufacturing (AM). Initially, he said, AM can support manufacture of tooling and fixtures. In the future, AM can provide on-demand tool manufacturing, and can improve composites maintenance and repair operations (MRO). Here too, he said, are opportunities to couple AM with machine learning. However, he said, more collaboration is needed between machine and material suppliers.

Lo Faro went on to name three important simulation and modeling needs for the composites industry:

  • Molecular modeling — informing experimentation and increasing speed to market
  • Artificial intelligence — applied to materials design and discovery
  • Certification by analysis — which he called the Holy Grail

These technologies have the potential to shorten development time through optimized molecular design for improved properties, changing the way the materials themselves are developed. The future is now, he said, for multi-scale modeling to accelerate composites innovations and adoption and failure prediction.

Lo Faro finished optimistically: “When we look at the next 40 years, I believe composites are a material that will exceed the capabilities of metals.”

 

Gurit Advanced Composite Materials & Solutions
Toray Advanced Composites hi-temperature materials
Keyland Polymer Webinar Coatings on Composite & AM
Custom Quantity Composite Repair Materials
BARRDAY PREPREG
Composites One
world leader in braiding technology
Harper International Carbon Fiber

Related Content

Work In Progress

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More

A new era for ceramic matrix composites

CMC is expanding, with new fiber production in Europe, faster processes and higher temperature materials enabling applications for industry, hypersonics and New Space.

Read More
Work In Progress

The potential for thermoplastic composite nacelles

Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.

Read More
Carbon Fibers

Cryo-compressed hydrogen, the best solution for storage and refueling stations?

Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.

Read More

Read Next

Design/Simulation

Modeling and characterization of crushable composite structures

How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.

Read More
Finishing & Fastening

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Aerospace

VIDEO: High-rate composites production for aerospace

Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.

Read More
Ready-to-Ship Composites