Composites One
Published

The Learjet 85: Large step out of the autoclave

HPC editor-in-chief Jeff Sloan examines the significance of the Bombardier Learjet 85’s first flight.

Share

Bombardier’s Learjet 85 business jet flew for the first time on April 9 in Wichita, Kan. An aircraft’s first flight is a significant milestone, and good cause for celebration. However, the Learjet 85’s first foray into the air is, potentially, even more significant for the aerospace industry, and might be offering us, at least symbolically, a glimpse into the future of resin, fiber and process use in composite aerostructure manufacturing.

    The Learjet 85’s significance does not lie in its composites-intensity. Almost every aircraft under development today — in commercial, business and general aviation — will fly composites in some way, and many will make extensive use of carbon fiber composites in the fuselage, wings, tail and other structures. What sets the Learjet 85 apart is how and with what Bombardier is manufacturing the plane’s composite structures.

    Pierre Harter, engineering manager – M&P, technology readiness and structural certification Learjet, reported at SAMPE Tech in Wichita late last year that the wingskins and spars for the plane are manufactured in Belfast, Ireland, using an in-autoclave resin transfer infusion (RTI) process. Moreover, the fuselage and empennage are manufactured in Querétaro, Mexico, via an out-of-autoclave (OOA) vacuum-bagged process. 

    Infusion and OOA are not new, but their use in the manufacture of major aerostructures was, prior to the Learjet 85 program, largely unexplored territory. The production of the fuselage is particularly ambitious. It’s done with Cytec Aerosapce Material’s (Tempe, Ariz.) CYCOM 5320 prepreg, under vacuum bag in a conventional oven — at about 6,000 ft/1,829m above sea level in south-central Mexico. The altitude, of course, makes the vacuum calculations more challenging. On top of that, Harter says breathing methods, debulk cycles, dwell times and resin rheology needed special tweaking to achieve less than 1 percent void content in fuselage parts.

    When asked why Bombardier is taking the time, and going to the expense and effort required to develop an OOA process for the Learjet 85, Harter said the company saw that aerostructures manufacturing was headed in this direction and wanted to be in front of the technology, not chasing it … or competitors.

    Even more time, expense and effort, of course, was required to meet the most important challenge: the U.S. Federal Aviation Admin. (FAA). As Boeing and Airbus did with the 787 and A350 XWB respectively, Bombardier was required to perform extra tests to meet the FAA’s special conditions for certification. These focus on inflight flammability, post-crash flammability, crashworthiness, durability, toxicity in burn, damage tolerance and thermal expansion at interactions with metals.  

    The more composites are used in aircraft, the more familiar and comfortable the FAA will become with what is still, in its view, a relatively novel material. Thus, theoretically, composite aircraft certification will become easier and faster. Until then, however, airframers like Bombardier will bear the brunt of the extra scrutiny on behalf of what should be a grateful industry and will surely earn a place among composites industry pioneers. Less certain, however, is the Learjet 85’s place in the evolution of composite materials and process development. Does it mark the first large step out of the autoclave, or will it be an historical anomaly? I would wager the former, and I look forward to what the aerocomposites industry does next.

Toray Advanced Composites
BARRDAY PREPREG
Custom Quantity Composite Repair Materials
Harper International Carbon Fiber
Composites One
Adhesives for Composite Materials
Release agents and process chemical specialties
MITO® Material Solutions
NewStar Adhesives - Nautical Adhesives
CompositesWorld
CAMX 2024
Composites product design

Related Content

Infrastructure

Novel composite technology replaces welded joints in tubular structures

The Tree Composites TC-joint replaces traditional welding in jacket foundations for offshore wind turbine generator applications, advancing the world’s quest for fast, sustainable energy deployment.  

Read More
Weaving

Composite resins price change report

CW’s running summary of resin price change announcements from major material suppliers that serve the composites manufacturing industry.

Read More
Aerospace

MFFD thermoplastic floor beams — OOA consolidation for next-gen TPC aerostructures

GKN Fokker and Mikrosam develop AFP for the Multifunctional Fuselage Demonstrator’s floor beams and OOA consolidation of 6-meter spars for TPC rudders, elevators and tails.

Read More
ATL/AFP

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More

Read Next

Out of Autoclave

An out-of-autoclave progress report

CW Conferences director Scott Stephenson recalls Dale Brosius’ update on Quickstep’s out-of-autoclave work for the F-35 program.

Read More
Plant Tours

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
ATL/AFP

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Ready-to-Ship Composites