Composites One
Published

What an acquisition tells us about our industry’s future

The aerospace composites supply chain is diligently assessing its ability to meet the needs of those who will build next-generation aircraft. 

Share

 As I write this, we here at CW are just back from JEC World 2018 in Paris, France (March 6-8), and I’m reminded, again, that no matter how long you’ve worked in the composites industry, spending even a few hours at JEC World is akin to drinking water from a firehose. The show encapsulates in one (large) physical space all of the dynamism and creativity that composite materials and manufacturing processes have to offer. To absorb and comprehend even a fraction of it all would seem a Herculean feat.

Still, if you are there all three days and visit with as many people as we do, it’s always possible to discern recurring ideas, themes and trends that offer a few signals, at least, about where composites are, and where they are headed. 

Indeed, we heard repeatedly at the show that the two major commercial aircraft OEMs, The Boeing Co. (Chicago, IL, US) and Airbus (Toulouse, France), are both in the throes of conducting serious trade studies of potential materials for use on next-generation commercial aircraft.

The particular aircraft in question are the Boeing NMA (New Mid-market Airplane, a replacement for Boeing’s 757), the Boeing 737 and the Airbus A320. The NMA is necessary because Boeing now has a product gap between its largest 737 variant and the composites-intensive 787. The 757 had filled that gap, but Boeing stopped making that plane in 2004. The official launch of the NMA has been “imminent” for several months, reportedly because Boeing is still finalizing details of the plane’s configuration. A sticking point appears to be the size and manufacturer of the plane’s engines. Boeing reportedly is targeting 2025-2026 for its entry into service.

The 737 and the A320, the workhorses of the commercial aerospace industry, are highly profitable for their respective OEMs, and represent the world’s largest-volume commercial aircraft. Although both planes were updated a few years ago, with new engines and other features, they are due for clean-sheet redesigns, possibly starting in the early 2020s.

So, as Boeing and Airbus watch the aerospace world evolve, the question facing the engineers who must design the NMA and redesign the 737 and A320 is, Where and how do we apply composites? And while that is not a settled matter, one thing is becoming increasingly clear: When composites are next applied on major aerostructures, there’s a good chance they’ll have a thermoplastic matrix (see Part 2 of CW’s ongoing discussion of promising research toward that end). This fact has the aerospace composites supply chain diligently assessing its ability to meet the needs of those who will build next-generation aircraft. 

It was to that end that on March 14, less than a week after the show, the world’s largest carbon fiber manufacturer, and supplier of almost all carbon fiber for the Boeing 787, Toray Industries (Tokyo, Japan), announced that it will pay more than US$1 billion (€931 million) to acquire TenCate Advanced Composites (Nijverdal, The Netherlands), a specialist in thermoplastic as well as thermoset prepreg. There had been talk before JEC that TenCate was seeking a strategic partnership, and at the show TenCate officials confirmed that the company was on the market.

In the composites industry, US$1 billion acquisitions are rare and, thus, important. Second, and more specifically, Toray is well known for its careful and thoughtful decision making. Many will recall that it committed to vast increases in its carbon fiber output only after Boeing and others committed to carbon fiber for commercial airframes. Indeed, the suddenness of the TenCate acquisition and the investment’s size alone are enough to make the entire industry sit up and notice. Now, Toray has, effectively, placed a US$1 billion bet on its future. Given this, is it not reasonable to conclude that Toray must firmly believe thermoplastic composite structures will be a major part of one or more next-generation aircraft program? If so, it must firmly believe that TenCate is necessary to help it meet that demand.

Time will tell if this bet is a good one, but early signs suggest it is.

Vacuum and Controlled Atmosphere furnaces
Fire Retardant Epoxies
Wickert Hydraulic Presses
Park Aerospace Corp.
Composites One
Ad showing Janicki CNC Mill machining part in tool
Nanoparticles filled epoxy adhesives
CIJECT machines and monitoring systems

Related Content

Hydrogen Storage

TU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage

Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.

Read More

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More
Feature

The state of recycled carbon fiber

As the need for carbon fiber rises, can recycling fill the gap?

Read More
Aerospace

New polymer expands composites options in demanding environments

Aromatic thermosetting copolyester offers unique properties, availability in multiple form factors.

Read More

Read Next

Aerospace

Plant tour: A&P, Cincinnati, OH

A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.

Read More
Machining/Drilling

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
Hi-Temp Resins

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Composites One