Airtech
Published

Need for standardization in composites manufacturing

CW Talks is “on” and already proving to be well worth a listen. 

Share

CW Talks: The Composites Podcast is up and running. If you have not yet listened in, you can give it a try at www.compositesworld.com/podcast, or via iTunes and Google Play. We have recorded seven episodes, thus far, talking to a variety of people who represent a variety of interests in the composites industry. Our discussions have ranged widely, covering many topics, depending on the interviewee’s background and composites expertise.


I was, therefore, somewhat surprised, recently, when three CW Talks interviewees brought up the same subject in response to my question about challenges facing the composites industry and how they might be addressed.

The challenge each mentioned? The need for standardization in composites manufacturing.

Notably, the three in question represent diverse industry segments: Greg Mark, founder and CEO of 3D printer manufacturer Markforged; James Austin, CEO of technical fabrics manufacturer North Thin Ply Technology (NTPT); and Frazer Barnes, managing director of carbon fiber recycler ELG Carbon Fibre Ltd.

Before I tell you what they said, a little background about standardization. If you know even a little bit about composite materials, you know that they are famous for their ability to provide engineered solutions to many manufacturing challenges. This is thanks primarily to the many combinations of resins, fibers, tooling, and manufacturing processes available. The bespoke nature of these engineered solutions is a blessing and a curse — a blessing because of composite materials’ high adaptability, and a curse because of the extreme complexity that results, making it difficult for non-composites engineers and designers to understand and use the material effectively. In fact, materials standardization, it is argued, would help reduce that complexity and make adoption of composite materials easier and quicker.

This idea was first raised in my CW Talks conversations by Mark (Markforged), who described market reaction when he first introduced the Mark One, his 3D printer that applies continuous carbon fiber reinforcement in a thermoplastic resin matrix. Discussions about the Mark One revolved around the anisotropic nature of the material, which Mark says was readily understood and appreciated by a vast majority of attendees at the composites tradeshows where Markforged exhibited. But at noncomposites tradeshows, Mark says many engineers he spoke to, although they understood the words he was saying, could not wrap their minds around anisotropic material properties. As a result, they had difficulty immediately understanding the benefit or application of a 3D printer that applies continuous carbon fiber reinforcements. Which means, in essence, they had difficulty understanding composites.

For Austin (NTPT) and Barnes (ELG), their calls for standardization grew out of a simple question: What’s required of the composites industry to help speed maturation and adoption? Austin lists innovation and cost as his top two challenges, but follows with this: “A piece of the industry that is still missing is a standardization of materials. And I think half the industry is with me on that and half the industry is not with me.” Austin notes that metallic alloys are already standardized, which makes them easy to specify. And although composite materials might not be standardizable in the same way, they can be standardized in some way. He says, “Whilst the world is not overburdened with highly refined and skilled composite engineers, the rate of uptake is, I think, limited . . . and standardization is one way through that.”

For Barnes, material standardization would be at the top of his to-do list, were he named CEO of the composites industry for a year, and he also draws a correlation with cost: “Every material we treat 
as an individual material. We don’t have standard grades . . . and 
that brings a lot of cost in initial evaluation and characterization.” And then, echoing Mark and Austin, he says, “We need to make this material easier to use by people who may not be composites experts.”

This last point is a difficult one against which to argue, particularly for an industry starved of engineering talent. Standardization, perhaps, deserves serious consideration.

Coast-Line Intl
Airtech
HEATCON Composite Systems
TFP is now James Cropper
Airtech
Airplane in the air with Collins Aerospace Logo
CompositesWorld
Composites product design

Related Content

Aerospace

Manufacturing the MFFD thermoplastic composite fuselage

Demonstrator’s upper, lower shells and assembly prove materials and new processes for lighter, cheaper and more sustainable high-rate future aircraft.

Read More
Aerospace

Thermoplastic composites welding advances for more sustainable airframes

Multiple demonstrators help various welding technologies approach TRL 6 in the quest for lighter weight, lower cost.

Read More
ATL/AFP

CFRTP upper stage propellant tank

PROCOMP uses in-situ consolidation AFP and ultrasonic welding to demonstrate lightweight, novel tank design.

Read More
ATL/AFP

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More

Read Next

Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Plant Tours

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Aerospace

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Airtech International Inc.
;