Published

VIBES project celebrates three years of EOL composites strategies

Members have sought to resolve EOL thermoset challenges through development, demonstration of controlled separation and recovery of composites by means of customized, 100% bio-based bonding materials.

Share

Flaxco flax fibers by Flipt & Dobbel.

Flaxco flax reinforcement by Flipt & Dobbel. Source | The Alliance of European Flax-Linen and Hemp

Earlier this year, the VIBES project, aiming to develop an innovative, cost-efficient recycling solution to resolve the end-of-life (EOL) issues of thermoset composites, celebrated its third year of exploring developments and future strategies. The research and innovation project funded by Bio-Based Industries Joint Undertaking under Horizon 2020, began in 2021 with a budge of almost €5.3 million. 

VIBES’ goals involved combines materials science development and a green chemistry recycling technology to decrease the amount of non-biodegradable polymers sent to disposal or discharged to the environment by at least 40%. To reach that purpose, its consortium members initially focused on the controlled separation and recovery of composite material components by means of developing customized, 100% bio-based bonding materials (BBM). In addition, the project was to design and develop bio-based thermoset composites, with the intention to place industrial bio-based and recyclable substituent composite materials on the market. Developed materials were to be validated for optimum performance/cost ratio in three high-demand industrial sectors: aeronautical, construction and naval industries.  

VIBES has made significant progress in the past months by developing various combinations of BBMs, resins and fibers (including carbon, glass or flax fibers with resins) and employing several methods to produce bio-based and recyclable thermoset composites. These composites are currently being validated based on sector-specific requirements.

One notable achievement is the preparation of the project’s first composite panel for the construction sector using bisphenol-free epoxy resin, through collaboration between Specific Polymers and Acciona, featuring glass fiber reinforcement combined with the developed bisphenol-free epoxy resin, specifically designed to meet the rigorous demands of the infusion process and various construction applications. 

In addition, substantial advancements have been made in the VIBES’ recycling technology for sustainable thermoset composites. These include the initial design of a pilot plant for implementing the VIBES recycling solution, evaluation of toxicity and safety issues and strategies for waste collection and processing. Furthermore, a preliminary business plan has been developed to facilitate the successful commercialization of the project’s most promising exploitable results, based on market data and economic insights, and will be refined with ongoing project developments. 

Project partners have been actively participating in events, demonstrating their advanced research in recycling technologies specifically designed for composite materials. Project lead Aitipp presented VIBES insights via webinars and Meetech Spain 2024, while Acciona showcased the project at JEC World 2024 in Paris, France, drawing attention from researchers and industry leaders. In addition, the University of Limerick, in collaboration with the BIO-UPTAKE project, co-organized a workshop in May 2024 to explore the future of CFRP products and their integration into the automotive and aerospace industries. 

Most recently, consortium member Flipts & Dobbels supplied its high-performance Flaxco flax reinforcements to the initiative, contributing to VIBES’ latest breakthrough: the successful manufacture of a carbon and natural fiber panel made with the bisphenol-free epoxy resin using resin infusion techniques. Flipts & Dobbels says it has been supporting the VIBES project for more than 4 years, working with industry innovators to advance the development of bio-based composites by leveraging recyclable epoxy resins, lignin-based carbon fibers and natural flax reinforcements. 

“The VIBES project has demonstrated that to fully realise the potential of flax fibers in performance composite applications, all aspects of the entire flax fiber production process, from seed selection to textile manufacturing, should be considered,” notes Caroline Flippts, Flipts & Dobbels. “With more than a 100 years’ experience of working with flax, our company is proud to support the continuous improvements delivered by the VIBES project.”

As part of the VIBES collaboration, manufacturing specialists Juno Composites has also explored key innovations, including the impact of moisture content in natural flax textiles on mechanical performance. 

For related content, read “University of Limerick seeks to improve composites recycling solutions.”

Related Content

Epoxies

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More

Sulapac introduces Sulapac Flow 1.7 to replace PLA, ABS and PP in FDM, FGF

Available as filament and granules for extrusion, new wood composite matches properties yet is compostable, eliminates microplastics and reduces carbon footprint.

Read More
Carbon Fibers

The lessons behind OceanGate

Carbon fiber composites faced much criticism in the wake of the OceanGate submersible accident. CW’s publisher Jeff Sloan explains that it’s not that simple.

Read More
Work In Progress

The potential for thermoplastic composite nacelles

Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.

Read More

Read Next

Recycling

Veolia, Composites Recycling SA partner for composites waste circularity

Three-phase project establishes, scales and launches operations of large-scale thermolysis-based recycling in western France.

Read More
Aerospace

HERWINGT project to design novel composite wing configuration for future regional aircraft

Pioneered wing architecture, more integrated systems and new material technologies are being explored for 20% weight reduction, 50% fuel burn reduction and to enable a hybrid-electrical use case.

Read More
Sustainability

ILAuNCH explores 100% bio-epoxy resin suitability for space

Three partner universities in Australia aim to mature research for Change Climate’s Byoxy bio-epoxy resin formulation, relying on environmental simulation testing and structural composites expertise.

Read More