Published

AnalySwift receives NASA STTR contract to enable second-use spacecraft infrastructure

Together with Purdue, AnalySwift aims to develop a composite heater layer and a novel software tool or module to achieve assembly, disassembly of thermoplastic composite joints in space during long-duration missions.

Share

Kawai Kwok.

Kawai Kwok, an associate professor in Purdue University’s School of Aeronautics and Astronautics, will be the primary investigator on a project with commercial software provider AnalySwift LLC. Source | Purdue University/Alan Cesar

AnalySwift LLC (West Lafayette, Ind., U.S.), a Purdue University-affiliated company, has received a Phase I small business technology transfer (STRR) contract from NASA (Washington, D.C., U.S.) worth $156,424. The contract will fund two advancements: processes and hardware to disassemble thermoplastic composite spacecraft components and reassemble them for secondary use, and software for multiphysics simulation and analysis of the involved materials. Kawai Kwok, associate professor in Purdue’s School of Aeronautics and Astronautics, is the principal investigator.

According to Allan Wood, AnalySwift president and CEO, long-duration crewed missions to the moon, Mars and beyond require infrastructure, such as trusses, to be constructed sustainably on these surfaces. But there are immense logistical challenges in transporting heavy and large payloads to space.

“The AnalySwift project proposes a novel method of disassembling and reassembling thermoplastic composite joints in space,” Wood explains. “Our proposed method enables reconfiguration of truss structures in space, transitioning away from the current one-time use model to a scalable and sustainable approach.”

Kwok says spacecraft components could be quickly and easily repurposed into vastly different geometries. “For example, a lunar lander support truss could become a vertical solar array support truss,” he says. “There are other applications, depending on mission needs using the same set of structural elements and innovative multiphysics modeling.”

“This multiphysics modeling framework will simulate the debonding and bonding processes of thermoplastic composite joint-strut interfaces using embedded carbon nano-heaters.”

As part of the contract, AnalySwift will develop a composite heater layer for the trusses and other infrastructure, which will be embedded with nanostructured carbon fillers. The layer, to be made from the same thermoplastic matrix as the adhered composite parts, will bring the matrix to the processing temperature for interface debonding by mechanical forces.

“Lightweight, conductive, thin nanocarbon films will be encapsulated inside semicrystalline thermoplastics such as PEEK [polyetheretherketone],” explains Kwok. “The disassembled struts and joints will be reassembled to the repurposed configuration via resistance welding using the same or additional heaters. The proposed in situ heating and reassembly method enables spacecraft components to be reused, which greatly reduces the logistical footprint to deliver technologies to space.”

Liang Zhang, senior research scientist at AnalySwift, says the company will also develop better engineering tools for composites, enabling reliable multiphysics simulation of their technique to repurpose lightweight structures made from thermoplastics.

“Theoretical and computational developments will include a new software tool or module, Thermoplastic Composites Multiphysics,” Zhang adds. “This multiphysics modeling framework will simulate the debonding and bonding processes of thermoplastic composite joint-strut interfaces using embedded carbon nano-heaters.”

Kwok says the framework has broader applications for thermoplastics. “Advancements include developing multiphysics models and data for electrical heating and welding, including establishing relations between bonding strength and the process conditions of temperature, pressure and time. More specifically, the disassembly and assembly processes of a nanocomposite is simulated using a third-party commercial finite element code with user subroutines defining the governing behavior of the material system.”

Moreover, AnalySwift’s multiphysics simulation tool will determine force, pressure and temperature histories during assembly and disassembly processes. “More specifically, it will incrementally solve the constitutive relations as an initial value problem, extract temperature distributions at specific time points and calculate the time and power required for completion,” Zhang says.

While the processes and hardware advancements for disassembly and reassembly are more applicable to space applications, the software has other potential uses, notes Wood. “It can be particularly useful where simulation tools can improve use possibilities for high-performance thermoplastics,” he explains. “Additional applications can be likely for aerospace, defense, automotive, marine, energy, electronics, sporting goods and medical devices. Applications also extend beyond simulation and into repair for thermoplastics.”

Temperature-Controlled Materials
Toray advanced composite material
Digital cutting
Improve durability, safety and performance
automated and manual cutting solutions

Related Content

Focus on Design

Jeep all-composite roof receivers achieve steel performance at low mass

Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.

Read More
Automotive

Carbon fiber, bionic design achieve peak performance in race-ready production vehicle

Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.

Read More
Epoxies

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More
Aerospace

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More

Read Next

Ceramic Matrix Composites

ORNL, Sierra Space create novel C/SiC TPS for reusable space vehicles

CMC tiles will be used on the Sierra Space DC100 Dream Chaser spaceplane carrying critical supplies and science experiments to and from NASA’s ISS.

Read More
Design/Simulation

AnalySwift receives $800,000 contract to improve composites simulation

The Phase II STTR contract from NASA, adding on to the company’s two Phase I programs in 2022, enables AnalySwift to develop and release DATEC, a design tool for engineers to design and analyze tailorable composite structures.

Read More
Aerospace

Second NASA contract received by AnalySwift progresses high-fidelity composites design tool

Research funded at Purdue University, University of Texas at Arlington will produce a computer tool to exploit tailorable composites, hybrid material systems for a variety of broad applications.  

Read More