Composites One
Published

3D-printed composite tail rotor gear box housing enhances Discovery super drone

CFP Technology teams with Flying-Cam to create 3D-printed, functional tail rotor actuators protection using Windform XT 2.0 composites and a powder bed fusion process.  

Share

Detail of Discovery’s tail rotor gear box housing. Photo Credit, all images: Flying-Cam

CRP Technology’s (Modena, Italy) long-term collaboration with unmanned airborne solutions developer Flying-Cam (Belgium) has resulted in the construction of the UAV Discovery’s tail rotor gear box housing — the main housing attached to the main tail boon. The flight-ready part is 3D-printed (powder bed fusion/PFB) using CRP’s Windform XT 2.0 composite material.

Discovery is a 75-kilogram maximum takeoff weight (MTOW) unmanned single-rotor helicopter. It is Flying-Cam’s newest, largest and most versatile system so far with increased endurance features. Fully integrated state-of-art sensors were carefully chosen to match the platform quality for a variety of applications ranging from entertainment, homeland security, earth monitoring and high-precision remote sensing generally.

“With the potential drones offer the civil market, and the interest in beyond visual line of sight [BVLOS] flights, we felt it was the right time to develop a drone that could not only capture beautiful imagery for movies, television shows and commercials, but that could carry a variety of payloads to collect the necessary data for other industrial applications,” Emmanuel Previnaire, founder and CEO of Flying-Cam, says.

The aim of the “super drone” project was to create a lightweight yet rigid physical and aerodynamic protection for the tail rotor actuators and the GPS antenna. Flying-Cam opted for CRP Technology’s proprietary high-performance Windform Top-Line range of composite materials, particularly Windform XT 2.0, a carbon fiber-filled polyamide-based 3D printing composite especially suitable in demanding applications for such a sector as motorsports, aerospace and UAV.

Detail of Discovery’s tail rotor gear box housing.

Flying-Cam’s Discovery during flight. 

The material replaced the previous formula of Windform XT in the Windform Top-Line family of materials for PBF created by CRP Technology, featuring improvements in mechanical properties including +8% increase in tensile strength, +22% in tensile modulus and a +46% increase in elongation at break.

“The component was planned to be clamped on the tail boom, and also support the carbon [fiber] plate used as a tail rotor ground protection,” Previnaire notes. “For this reason, a good stress resistance was needed. We  chose Windform XT 2.0 as it allows us to achieve a good weight-resistance ratio.” Moreover, the mechanical and thermal properties of Windform materials are strictly connected to the characteristics of the 3D printing process. 

“The most innovative aspect in enlisting the 3D printing process and composite materials supplied by CRP Technology, is the free shape design, important for aerodynamic purpose, as well as the ability to create complex wiring channels inside with strong attachment points, in one unique piece,” Previnaire underlines. “More specifically, the PBF process and Windform materials are said to enable the creation of hollow parts with a lot of functional details, such as fixation nuts integration, cable attachment points.”

“We started collaborating with CRP Technology many years ago, for the realization of SARAH 3.0, our electric vertical takeoff and landing [eVTOL] unmanned aerial system, now replaced by SARAH 4.0,” Previnaire adds. “CRP Technology 3D printed the airframe structure, air guide cooling system, tail unit and main battery connection.”

SARAH, as well as Discovery, is reported to be a cutting-edge “unmanned aerial intelligence” solution and only possible by mastering all the technologies and skills involved.

BARRDAY PREPREG
Adhesives for Composite Materials
Toray Advanced Composites
Harper International Carbon Fiber
Composites One
Custom Quantity Composite Repair Materials
Composites product design
HEATCON Composite Systems
Carbon Fiber 2024
CompositesWorld
CompositesWorld
MITO® Material Solutions

Related Content

Marine

Large-format 3D printing enables toolless, rapid production for AUVs

Dive Technologies started by 3D printing prototypes of its composite autonomous underwater vehicles, but AM became the solution for customizable, toolless production.

Read More
Biomaterials

Drawing design cues from nature: Designing for biomimetic composites, Part 1

Biomimicry is an interdisciplinary methodology that can inform composites design and manufacturing via use of more effective and sustainable materials, structural fabrication and technological practices.    

Read More

Low-void, large-scale, high-volume 3D-printed composites

Among its many composites-related projects, Oak Ridge National Laboratory recently installed its first AMCM test cell, combining extrusion with compression molding for fast, low-void, low-porosity thermoplastic composite parts.

Read More

Hybrid process marries continuous, discontinuous composites design

9T Labs and Purdue applied Additive Fusion Technology to engineer a performance- and cost-competitive aircraft bin pin bracket made from compression-molded continuous and discontinuous CFRTP.  

Read More

Read Next

Additive Manufacturing

Autonomous, electric shuttle retrofitted with CRP Technology Windform materials

Advanced 3D printing production process and Windform composite materials used to manufacture the required motor cover and washer reservoir flap valve components, account for Olli 2.0’s pod-like shape.

Read More
Additive Manufacturing

CRP Technology highlights Windform RS composite material for powder bed fusion processes

Polyamide-based carbon fiber-filled composite provides enhances functionality, flexibility and speed in developing intricate 3D-printed parts.

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Ready-to-Ship Composites