Altair acquires newFASANT
newFASANT’s analysis software plugs into existing Altair solutions and expands offerings in areas like antenna design and placement, radome analysis and more.
Design of an ogive radome with FSS using Radome Primitive from the MoM Module. Source | Altair
On Jan. 6, software solutions specialist Altair (Troy, Mich., U.S.) that it has acquired newFASANT (Guadalajara, Spain), a company that offers technology in computational and high-frequency electromagnetics. NewFASANT’s solutions are said to address a wide range of electromagnetic problems in areas such as antenna design and placement, radar cross section (RCS) analysis, automotive V2V/ADAS, and infrared/thermal signatures.
Originally a spin-off from the University of Alcalá, near Madrid, newFASANT offers a software portfolio containing various full-wave and high frequency asymptotic electromagnetic solvers. The combination of this portfolio with Altair’s Feko electromagnetic analysis software package will enable Altair to offer advanced solutions in relevant technology areas like V2V, Doppler effects, radome analysis, periodic structures, reflectarrays and more.
“By combining [newFASANT’s] people and software into our advanced solutions offerings, we are clearly emerging as the dominant player in high-frequency electromagnetics — technology that is critical for solving some of the world’s toughest engineering problems,” says James Scapa, Altair’s chief engineering officer and founder.
“We couldn’t be more excited to join the ranks of such a globally relevant and growing software player,” says Felipe Cátedra, CEO of newFASANT. “Ever since we spun off from the University of Alcalá, we have grown the sophistication of our offerings, but by joining a powerhouse like Altair, we will be able to commercially expand our footprint immensely.”
Related Content
-
Testing to support composite bolted joint analysis
An overview of ASTM Standard Guide D8509, and its coupon-level mechanical testing of design properties for analyzing composite bolted joints.
-
Optimizing a thermoplastic composite helicopter door hinge
9T Labs used Additive Fusion Technology to iterate CFRTP designs, fully exploit continuous fiber printing and outperform stainless steel and black metal designs in failure load and weight.
-
Composite sidewall cover expands options for fire-safe rail components
R&D project by CG Rail explores use of carbon fiber-reinforced thermoplastics and recycled manufacturing scrap to meet fire safety, weight and volume targets.