Composites One
Published

Boeing completes milestone for Commercial Crew system

Boeing has completed the Certification Baseline Review for its CST-100 spacecraft under NASA's Commercial Crew Transportation Capability (CCtCap) contract.

Share

NASA reported on Dec. 1 that it has approved the completion of Boeing’s (Chicago, IL, US) first milestone in the company’s path toward launching crews to the International Space Station (ISS) from the United States under the Commercial Crew Transportation Capability (CCtCap) contract.

The Certification Baseline Review is the first of many more milestones, including flight tests from Florida’s Space Coast, that will establish the basis for certifying Boeing’s human space transportation system to carry NASA astronauts to ISS. The review established a baseline design of the Crew Space Transportation (CST)-100 spacecraft, United Launch Alliance Atlas V rocket, and associated ground and mission operations systems.

“The work done now is crucial to each of the future steps in the path to certification, including a flight test to the International Space Station,” says Kathy Lueders, manager of NASA’s Commercial Crew Program. “This first milestone establishes an expected operating rhythm for NASA and Boeing to meet our certification goal.”

On Sept. 16, the agency unveiled its selection of Boeing and SpaceX (Hawthorne, CA, US) to transport U.S. crews to and from the space station using its CST-100 and Crew Dragon spacecraft, respectively. These contracts will provide U.S. missions to the station, ending the nation’s sole reliance on Russia and allowing the station’s current crew of six to grow, enabling more research aboard the unique microgravity laboratory.

The CCtCap contracts are designed for the companies to complete NASA certification of their human space transportation systems, including a crewed flight test with at least one NASA astronaut aboard to verify the fully integrated rocket and spacecraft system can launch from the United States, maneuver in orbit and dock to the space station, as well as validate all its systems perform as expected. Once the test program has been completed successfully and the systems achieve NASA certification, the contractors will conduct at least two, and as many as six, crewed missions to the space station. The spacecraft also will serve as a lifeboat for astronauts aboard the station.

During the review, Boeing provided NASA with a roadmap toward certification, including its baseline design, concept of operations and management and insight plans. The Boeing team also detailed how the CST-100 would connect with the station and how it plans to train NASA astronauts to fly the CST-100 in orbit.

“It’s important for us to set a robust plan for achieving certification upfront,” says Boeing Commercial Crew program manager John Mulholland. “It’s crucial for us to achieve our 2017 goal, and the plan we’ve put in place will get us there.”

By expanding the crew size and enabling private companies to handle launches to low-Earth orbit — a region NASA has been visiting since 1962 — the nation's space agency can focus on getting the most research and experience out of America's investment in the International Space Station. NASA also can expand its focus to develop the Space Launch System and Orion capsule for missions in the proving ground of deep space beyond the moon to advance the skills and techniques that will enable humans to explore Mars.

Composites One
Vacuum and Controlled Atmosphere furnaces
Wickert Hydraulic Presses
Nanoparticles filled epoxy adhesives
Park Aerospace Corp.
Ad showing Janicki CNC Mill machining part in tool
Fire Retardant Epoxies
Visual of lab with a yellow line
Large Scale Additive Manufacturing
Keyland Polymer Webinar Coatings on Composite & AM
NewStar Adhesives - Nautical Adhesives
HEATCON Composite Systems

Related Content

TPRC training courses target thermoplastic composites

Three upcoming in-person thermoplastic composites courses, ranging from entry-level to advanced, are organized to enhance composites professionals’ knowledge in this burgeoning field.  

Read More

TRB Lightweight Structures partners with University of Bristol to broaden PFA offerings

Knowledge Transfer Partnership project aims to develop novel and improved PFA resin formulations for composite applications.  

Read More

Norco Composites awarded new contracts, recruits to bolster workforce

High demand for Norco’s composites expertise in the defense, aerospace and subsea markets has led to the company’s investment in 10+ new workers and specialist training programs and facility developments.  

Read More

The Native Lab launches composites course training membership plan

Courses that touch on the fundamentals of composite materials, design, analysis and more are available for individuals and companies alike through TNL’s online platform.  

Read More

Read Next

Machining/Drilling

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
Defense

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Aerospace

Plant tour: A&P, Cincinnati, OH

A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.

Read More
Composites One