Composites One
Published

Cummins debuts 15-liter hydrogen engine and partners with Daimler for fuel cell trucks

Full-scale production of H2 ICE expected in 2027 while Daimler Truck will have initial fuel cell trucks available to select North American customers in 2024.

Share

Photo Credit: Cummins and Daimler Truck North America

Cummins Inc. (Columbus, Ind., U.S.) has debuted its 15-liter hydrogen (H2) combustion engine at the ACT Expo in Long Beach, Calif. This engine is built on Cummins’ new fuel-agnostic platform — below the head gasket, each engine has largely similar components, while above the head gasket, each has different components for different fuel types. This engine, used with clean, zero-carbon H2 as a fuel, is a key enabler of Cummins’ strategy to go further faster to help customers reduce greenhouse gas (GHG) emissions. Full production is expected in 2027.

Cummins has also announced it will collaborate with Daimler Truck North America (DTNA, Portland, Ore., U.S.), reportedly the largest heavy-duty truck manufacturer in North America, to upfit and validate Freightliner Cascadia trucks with a Cummins H2 fuel cell powertrain for use in North America. First units are slated to be available in 2024.

 

Cummins H2 combustion engines

Cummins announced the testing of hydrogen internal combustion engine (ICE) technology in July 2021. It reports that it has made impressive early results, already achieving targets for production power (290 horsepower) and torque (>810 foot-pounds) from the medium-duty engine. Additional testing on Cummins’ more advanced prototypes will begin soon, and the company can quickly scale production with its significant global manufacturing footprint.

Cummins’ vision is that the industry needs multiple solutions to meet the needs of all on- and off-highway customers and all applications considering the variety of duty cycles and operating environments. This new H2 combustion engine will be a zero-carbon solution for multiple markets. Cummins intends to produce H2 internal combustion engines in both 15-liter and 6.7-liter displacements, believing that these engines enable the industry to take action and reduce GHG emissions this decade, ultimately accelerating CO2 reduction.

“We’ve established significant goals as part of our PLANET 2050 sustainability strategy, including a target of zero emissions,” Srikanth Padmanabhan, president of Engine Business, Cummins Inc., says. “Reducing well-to-wheels carbon emissions requires innovation of both energy sources and power solutions. While use cases for battery electric and fuel cell electric powertrains are promising, the pairing of green hydrogen in the proven technology of internal combustion engines provides an important complement to future zero emissions solutions.”

“Working with Cummins to navigate the journey to zero emissions means working with an experienced partner that has the right knowledge, tools and resources to ensure a smooth transition,” Jim Nebergall, general manager, Hydrogen Engines at Cummins Inc., adds. “Our customers are responding favorably to this practical technology. These engines look like engines, they sound like engines and fit where engines normally fit.”

Cummins claims that H2 ICE use zero-carbon fuel at a lower initial price versus a fuel cell or battery electric vehicle (BEV) with little modification to today’s vehicles. It also posits that accelerated market adoption of H2 engine vehicles will be driven by the technology’s high maturity, low initial cost, extended vehicle range, fast fueling, powertrain installation commonality and end-user familiarity.

“Heavy-duty trucking is critical to the global economy and is one of the hard-to-abate sectors of the economy,” Daryl Wilson, executive director of the Hydrogen Council, says. “We are encouraged by progress at Cummins in the development of hydrogen-fueled internal combustion engines and look forward to continued advancements that can help us reach cost-effective decarbonization of economies worldwide.”

 

Cummins and Daimler to deliver fuel cell trucks in North America

In addition to the company’s development of H2 ICE, Cummins is also pursuing H2 fuel cell applications. DTNA is collaborating with Cummins to validate Freightliner Cascadia trucks with a Cummins H2 fuel cell powertrain for use in North America. Freightliner will leverage Cummins’ fourth generation fuel cell powertrain, which provides improved power density, efficiency and durability.

The joint effort will support both organizations’ goals to reduce emissions across product offerings and operations. Upon successful validation, the companies intend to have initial units available in 2024 for selected customers.

“Cummins and Daimler Truck have a strong history of partnership, and this next step into fuel cell electric vehicles [FCEVs] is an exciting development for zero-emissions transport,” Amy Davis, president of New Power at Cummins, says. “Hydrogen fuel cells are a promising solution for the demanding requirements of heavy-duty trucking. Our collaboration in this market is an important milestone for both companies as we work to accelerate the shift to a carbon-free economy.”

“CO2-neutral commercial transportation must not only be technically feasible, but also economically viable for our valued customers,” Rakesh Aneja, vice president and chief of eMobility at DTNA, notes. “Depending on the customer application and energy infrastructure considerations, hydrogen-powered vehicles can absolutely complement battery-powered electric vehicles in accelerating our carbon-neutral journey. We are pleased to expand our partnership with Cummins to include hydrogen-powered fuel cell electric vehicles in our future portfolio. We remain focused on serving our customers by providing them with a choice of propulsion-technologies, ultimately resulting in solutions that best suit their business needs.”

Vacuum and Controlled Atmosphere furnaces
Park Aerospace Corp.
Ad showing Janicki CNC Mill machining part in tool
Fire Retardant Epoxies
Composites One
Nanoparticles filled epoxy adhesives
Wickert Hydraulic Presses
Release agents and process chemical specialties
Keyland Polymer Webinar Coatings on Composite & AM
NewStar Adhesives - Nautical Adhesives
CIJECT machines and monitoring systems
Large Scale Additive Manufacturing

Related Content

JEC

Recycling hydrogen tanks to produce automotive structural components

Voith Composites and partners develop recycling solutions for hydrogen storage tanks and manufacturing methods to produce automotive parts from the recycled materials.

Read More
Carbon Fibers

Hexagon Purus opens new U.S. facility to manufacture composite hydrogen tanks

CW attends the opening of Westminster, Maryland, site and shares the company’s history, vision and leading role in H2 storage systems.

Read More

Composites end markets: Automotive (2024)

Recent trends in automotive composites include new materials and developments for battery electric vehicles, hydrogen fuel cell technologies, and recycled and bio-based materials.

Read More

On the radar: Cryogenic testing of composites for future hydrogen storage

Netherlands, U.K., France, Germany and the U.S. build up test capability, look at thermoset and thermoplastic composite materials.  

Read More

Read Next

Automotive

Ballard Power and Wisdom Motor Co. partner to accelerate adoption of fuel cell commercial vehicles

As part of the collaboration, the companies plan to introduce and demonstrate a double-decker fuel cell bus in Hong Kong this year.  

Read More
Automotive

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Filament Winding

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
Composites One