Composites One
Published

R&D activities recommended to US DOE to achieve super-sized composite wind blades

“Big Adaptive Rotor” project is prioritizing technology to develop land-based 5-megawatt turbine with 100-meter-long blades.

Share

DNV GL recently announced the release of an in-depth study, commissioned by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, which examines the challenges associated with manufacturing and deploying next-generation, increasingly larger land-based wind turbines. According to the report, in the past decade, the U.S. wind energy industry has achieved significant improvements in energy production and cost efficiency, driven in part by increased turbine, blade and tower size. However, the industry is quickly approaching a logistical cost and capability ceiling as turbine components become too large for existing infrastructure and transportation to accommodate.

Currently, the report says, the largest blades deployed in the U.S. are 67 meters, but blades up to 88.4 meters — or almost as long as a football field — have been deployed in Europe; and blades up to 115 meters are on the horizon. As turbine component sizes increase, logistical constraints can either reduce the number of developable sites or elevate costs, which can make some potential sites economically uncompetitive. Finding new solutions to logistical challenges associated with ever-larger components can enable the wind industry to achieve optimal wind levelized cost of energy (LCOE) options for every region of the United States.

DNV GL explored three innovation pathways to help identify high-value R&D opportunities:

  • Innovative transportation: To address physical constraints and challenges, new methods can facilitate the transportation of blades from factories to wind projects via road, rail or air. 
  • Segmented blades: Segmented or modular blades may enable the use of more cost-effective transportation, but must also account for the impacts on blade design, manufacturing and on-site assembly.
  • On-site manufacturing: Deploying a temporary blade manufacturing factory at the project site to fabricate blades from raw materials to finished product largely eliminates transportation challenges associated with longer blades.

“DNV GL identified a number of R&D activities that could make contributions to the viable development of supersized blades. These recommendations are feeding into the U.S. Department of Energy-funded ‘Big Adaptive Rotor’ project to assess and prioritize technology needed to develop a cost-competitive land-based 5-megawatt turbine with 100-meter-long blades,” says Ryan Wiser, senior scientist, Lawrence Berkeley National Laboratory.

The acceleration of R&D to make supersized blades feasible requires collaboration between researchers in the United States, turbine manufacturers, blade manufacturers, and transportation logistics companies. Blades are the most critical component in determining the technical and economic performance of wind turbines. The logistics associated with supersized blades adds additional levels of complexity into the development process, which the industry and researchers must work collaboratively to address.

“To realize continued progress in making wind energy cost-competitive across all regions in the U.S., the wind industry must accelerate R&D in innovative approaches to blade design, manufacture and transportation,” said Richard S. Barnes, executive vice president, Energy North America at DNV GL. “The good news is that there appears to be fertile ground for R&D and accessible solutions on the near horizon.”

According to the report, high-value R&D areas include:

  • Further advances in high-stiffness / low-cost materials like industrial carbon fiber and thermoplastics materials;
  • Advanced controls and sensor technologies that could be applied to monitor or enable blade bending in transport or monitor or control segmented blade loads such that lower-weight blades can be achieved;
  • Reducing the blade chord dimension would enable operation at higher tip speeds and improves blade transport potential, but issues related to aeroacoustics and leading-edge erosion need further improvement; and
  • Advanced aeroelastic modeling of dynamic stability and deflections can enable the development of more slender blades that can allow controlled deflection during transport.
The pathways identified by this study are said to represent opportunities that, if realized, could significantly enable wide-scale deployment of supersized turbines across all regions of the United States.
Harper International Carbon Fiber
Composites One
Toray Advanced Composites
BARRDAY PREPREG
Custom Quantity Composite Repair Materials
Adhesives for Composite Materials
CompositesWorld
Airtech
Composites product design
Carbon Fiber 2024
NewStar Adhesives - Nautical Adhesives
Advert for lightweight carrier veils used in aero

Related Content

Wind/Energy

Hexagon Purus opens new U.S. facility to manufacture composite hydrogen tanks

CW attends the opening of Westminster, Maryland, site and shares the company’s history, vision and leading role in H2 storage systems.

Read More
Wind/Energy

Drag-based wind turbine design for higher energy capture

Claiming significantly higher power generation capacity than traditional blades, Xenecore aims to scale up its current monocoque, fan-shaped wind blades, made via compression molded carbon fiber/epoxy with I-beam ribs and microsphere structural foam.

Read More
Aerospace

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Plant Tours

Plant tour: AvCarb, Lowell, Mass., U.S.

Composites are often selected for their structural properties, but at AvCarb, innovation in carbon fiber-based products has driven fuel cell technology advances for decades.

Read More

Read Next

Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Aerospace

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Additive Manufacturing

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Composites One