Composites One
Published

Carbon fiber recycling: Ongoing research

There is much ongoing research in the area of recycling carbon fiber.

Share

There is much ongoing research in the area of recycling carbon fiber. Among other things, researchers are looking for better ways to deal with contaminated carbon fiber-reinforced polymer (CFRP) scrap, methods to improve the overall properties of reclaimed fibers, and approaches to improve the processability of reclaimed fibers.

A team lead by Dr. Nicholas Warrior and Dr. Steve Pickering at the University of Nottingham (U.K.) has been studying the use of fluidized bed technology. The group believes the approach is well suited for end-of-life components that may contain a mixture of materials and contaminants and, therefore, are unsuitable for other recycling methods. In the fluidized bed process, crushed composites scrap material is placed in a reactor on a grate, and a stream of fluid (in this case, a gaseous airstream) is forced up through the material at a temperature of 550°C/1022°F. Organic material, including the composite’s resin matrix, is oxidized. However, the velocity of the airflow is such that as the organics burn off, the lightweight fiber is forced upward while heavier matter, such as metallic material, remains in the reactor “bed.”

The now clean fibers are removed from the reactor by the gas stream, which propels them into a cyclone separator, a conical/cylindrical chamber in which the air flows in a downward spiral pattern, and then is directed upward through the center of the chamber and flows out the top. The chamber geometry and airflow rate are set in such a way that carbon fibers in the tornado-like airstream are driven outward by centrifugal force, strike the outside wall and fall to the chamber bottom, where they can be collected. The process also provides users the potential to recover the heat energy from the fully oxidized polymer and use it to reduce the system’s energy consumption. However, according to Pickering, carbon fibers recovered using this approach currently exhibit a loss of strength, ranging from 25 to 50 percent.
However, Pickering sees great potential in the use of supercritical fluids in such processes. At a temperature and pressure above their thermodynamic critical point, these fluids can diffuse through the composite solids like a gas and then dissolve the materials like a liquid. Supercritical fluids, such as propanol, are being tested in thermal fluid processes under high pressure and at temperatures of 200°C to 300°C (392°F to 572°F) to break down epoxy resin into more elementary materials that, potentially, could be reused as chemical products. After processing, high-quality clean carbon fibers can be recovered. The reclaimed fibers reportedly retain up to 97 percent of the tensile strength of the virgin material, with no change in modulus.  

Adherent Technologies Inc. (Albuquerque, N.M.) also continues research into carbon fiber recycling. Most recently, the company has developed a multistage recycling approach to address the thermoplastic toughened layers between the standard epoxy composite on Boeing’s 787. Adherent’s process is designed not only to reclaim the fiber but also to process the polymeric waste, breaking it down into more basic chemical building blocks that subsequently could be preprocessed into valuable chemicals or fuels.

Meanwhile, at Imperial College (London, U.K.), researchers are conducting extensive mechanical testing of composites manufactured from recycled fibers. Failure mechanisms are being used to build models and predict the performance of composites made from recycled fibers. One intriguing result, so far, is that testing indicates that when reclaimed fiber bundles held together by pyrolytic char are used as a reinforcement in a new molded product, they actually enhance the fracture toughness of the composite.
 

Vacuum and Controlled Atmosphere furnaces
Wickert Hydraulic Presses
Ad showing Janicki CNC Mill machining part in tool
Composites One
Fire Retardant Epoxies
Nanoparticles filled epoxy adhesives
Park Aerospace Corp.
Large Scale Additive Manufacturing
Alpha’s Premier ESR®
Release agents and process chemical specialties
Keyland Polymer Webinar Coatings on Composite & AM
HEATCON Composite Systems

Related Content

Feature

Composites end markets: Electronics (2024)

Increasingly, prototype and production-ready smart devices featuring thermoplastic composite cases and other components provide lightweight, optimized sustainable alternatives to metal.

Read More
Sustainability

CirculinQ: Glass fiber, recycled plastic turn paving into climate solutions

Durable, modular paving system from recycled composite filters, collects, infiltrates stormwater to reduce flooding and recharge local aquifers.

Read More
Sustainability

Microwave heating for more sustainable carbon fiber

Skeptics say it won’t work — Osaka-based Microwave Chemical Co. says it already has — and continues to advance its simulation-based technology to slash energy use and emissions in manufacturing.

Read More
Carbon Fibers

Hexagon Purus Westminster: Experience, growth, new developments in hydrogen storage

Hexagon Purus scales production of Type 4 composite tanks, discusses growth, recyclability, sensors and carbon fiber supply and sustainability.

Read More

Read Next

Wind/Energy

Carbon fiber reclamation: Going commercial

As the first commercial-scale carbon fiber recycling operations go online, research continues into both recycling alternatives and applications for recyclate.

Read More
Design/Simulation

Modeling and characterization of crushable composite structures

How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.

Read More
Machining/Drilling

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
Composites One