Ready-to-Ship Composites
Published

Continuous Fiber Manufacturing blurs the line between 3D printing and AFP

Continuous fiber manufacturing (CFM) is a 3D printing/continuous fiber deposition process patented by moi composites.

Share

Continuous fiber manufacturing (CFM) is the 3D printing/continuous fiber deposition process patented by moi composites (Milan, Italy). The company was established in February 2018 by materials engineer and professor Marinella Levi, design engineer Gabriele Natale and architect Michele Tonizzo. It was spun off from the +LAB, a collaborative 3D printing hub that Levi founded at the Politecnico di Milano.

CFM was patented in 2015 and demonstrated in 2016 through the Atropos project, which involved printing a continuous glass fiber/epoxy propeller blade using a Kuka industrial robot. The blade featured an internal truss and an exterior shell demonstrating both a multiaxial laminate (0°, 45°, etc.) and fiber placement along a nonlinear axis. Moi composites has developed a second-generation system using a Comau robot with a 1.0 × 0.5 × 0.8m height build envelope. “We have also used larger robots with rotary tables and larger build volumes, demonstrating that our technology is easily scalable,” says co-founder Tonizzo. “We currently can print with UV-cure in epoxy, acrylic and vinylester,” he says, “but we are not tied to UV curing.” Glass fiber up to 2400 tex and basalt fiber have both printed very well and moi composites is now working with carbon, though not with UV cure resins. The company can also print with electrically conductive fibers and is producing parts for biomedical, marine, oil and gas, and aerospace applications, mainly using glass fiber. It is also developing a third-generation, all-in-one print head with a system to apply pressure to the fibers, sensors, cutting mechanisms and a milling tool. Tonizzo says this will close the gap between 3D printing and automated fiber placement (AFP). “3D printing does not achieve the performance of AFP, but CFM offers more flexibility. We can already print with fibers 0.25-mm thick and have the ability to create curves and place continuous fibers in the ideal position,” he adds.

Hybrid processing is a concept moi composites has already explored, one of their successes being the Superior lightweight, low-deflection lower limb prosthesis. The prosthesis is made with a printed continuous glass fiber internal core which is then sheathed with a hand-layup, vacuum bag-only cured carbon fiber fabric and epoxy skin. “The whole design reduces deflection and increases customization while significantly cutting cost and production time,” says Tonizzo.

Part of this optimization is produced through the digital design and workflow, which uses Autodesk software with moi composites’ algorithms for stress and path optimization. This is what produces the optimized fiber path for both the structural loads and fiber deposition process.

CFM is open to a variety of materials and design innovations explored by +LAB, including 3D-printed infill patterns with a tunable elastic response, and printing with novel matrices like geopolymers, which behave like concrete. As moi composites continues advancing its CFM technology, will it sell print heads and machines? “Yes, but in the future,” says Tonizzo. “For now, we are producing parts and bringing the technology to the client's facility, using our know-how, print head and software to realize part solutions on demand. We are also seeking investors to further scale CFM machines and processes for commercial market opportunities.”

Read more in the blog | short.compositesworld.com/cfm_moi.

Keyland Polymer Webinar Coatings on Composite & AM
Composites One
Custom Quantity Composite Repair Materials
Toray Advanced Composites hi-temperature materials
world leader in braiding technology
Harper International Carbon Fiber
BARRDAY PREPREG
Gurit Advanced Composite Materials & Solutions

Related Content

Biomaterials

Natural fiber composites: Growing to fit sustainability needs

Led by global and industry-wide sustainability goals, commercial interest in flax and hemp fiber-reinforced composites grows into higher-performance, higher-volume applications.

Read More
Marine

The lessons behind OceanGate

Carbon fiber composites faced much criticism in the wake of the OceanGate submersible accident. CW’s publisher Jeff Sloan explains that it’s not that simple.

Read More
Nanomaterials

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Work In Progress

Bio-based acrylonitrile for carbon fiber manufacture

The quest for a sustainable source of acrylonitrile for carbon fiber manufacture has made the leap from the lab to the market.

Read More

Read Next

Machining/Drilling

Continuous Fiber Manufacturing (CFM) with moi composites

Continuous fiber 3D printing using epoxy, vinylester and acrylic with continuous glass, carbon, basalt and other fibers, including deposition along nonlinear curves, is only the beginning.

Read More
Aerospace

VIDEO: High-rate composites production for aerospace

Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.

Read More
Design/Simulation

Modeling and characterization of crushable composite structures

How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.

Read More
Composites One