Composites One
Published

JEC World 2016: Automotive highlights

On the automotive side, Henkel (Düsseldorf, Germany) emphasized on its JEC stand a glass fiber-reinforced composite leaf spring, based on Henkel’s polyurethane matrix resin Loctite MAX 2, used in the chassis of the new Volvo (Gothenberg, Sweden) XC90, a premium crossover SUV; the platform of this vehicle is expected to be applied to other Volvo cars in the coming years.

Share

On the automotive side, Henkel AG & Co. KGaA (Düsseldorf, Germany) emphasized on its JEC stand a glass fiber-reinforced composite leaf spring, based on Henkel’s polyurethane matrix resin Loctite MAX 2, used in the chassis of the new Volvo (Gothenberg, Sweden) XC90, a premium crossover SUV; the platform of this vehicle is expected to be applied to other Volvo cars in the coming years. Frank Kerstan, global program manager, automotive composites, says BENTELER-SGL (Ried im Innkreis Austria) is making the leaf springs via resin transfer molding (RTM) in 30-second cycle times. Able to produce eight to 10 leaf springs in each mold, BENTELER-SGL plans to manufacture up to 500,000 leaf springs per year by 2018. On the developmental side, Kerstan says Henkel is working on several intriguing technologies, including a urethane-based adhesive for multi-material automotive bonding applications that have a CTE mismatch. Also in the works is an RTM-based molding system using urethane resin that allows for the fast production of Class A surface body panels. This is done, says Kerstan, by use of a double-injection process in which the second injection creates the high-quality part surface that Class A requires.

Meanwhile, at its JEC World stand, Huntsman Advanced Materials (The Woodlands, TX, US) announced that it has developed a new epoxy resin system and a novel, cost-efficient compression molding process, to facilitate the simple production of structural composite parts, and enable cycle times as low as 1 minute without any further post-curing for high-volume applications such as automo- tive. Currently, a trademarked ARALDITE is used to manufacture BMW’s (Munich, Germany) i-Series cars. With a cure time of 2 minutes at 130°C, this system gives a total cycle time of around 2,5 minutes. However, the latest rapid-cure ARALDITE epoxy system reportedly provides a cure time of only 30 seconds and displays a higher Tg, thus enabling robust processing up to 150°C and a press cycle time of only 1 minute, without further post-curing of the part. Following cure, the epoxy system displays a tensile elongation in excess of 5% with a Tg of 120°C.

To complement this new epoxy system, an innovative and simple Dynamic Fluid Compression Molding (DFCM) process also has been developed by Huntsman, which eliminates high-pressure injection and, in many cases, even the need for a preform. Resin impregnation occurs through the thickness, greatly reducing the potential for fiber displacement, a common problem with resin transfer molding (RTM). Company tests show reduced void content of laminates in comparison to conventional wet-compression molding (WCM) processing, and porosity of less than 1%, making it comparable to high-pressure RTM (HP-RTM) or autoclave, even in deep-draw parts. Fiber volume content of 66% can be easily achieved with no special processing conditions. The new DFCM process means lower mold pressures and a lighter press, plus no need for a high-pressure injection machine. Plus, DFCM eliminates resin waste because no surplus of resin or fiber is required to remove air from the part. The new process enables fast processing of thermoset parts, without the expense of prepreg and higher-priced thermoplastics. 

Harper International Carbon Fiber
Composites One
Custom Quantity Composite Repair Materials
Toray public database prepreg materials
BARRDAY PREPREG
ColorForm multi-component injection
NewStar Adhesives - Nautical Adhesives
Alpha’s Premier ESR®

Related Content

Sustainability

ASCEND program update: Designing next-gen, high-rate auto and aerospace composites

GKN Aerospace, McLaren Automotive and U.K.-based partners share goals and progress aiming at high-rate, Industry 4.0-enabled, sustainable materials and processes.

Read More
Biomaterials

Natural fiber composites: Growing to fit sustainability needs

Led by global and industry-wide sustainability goals, commercial interest in flax and hemp fiber-reinforced composites grows into higher-performance, higher-volume applications.

Read More
Aerospace

The potential for thermoplastic composite nacelles

Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.

Read More
Work In Progress

Bio-based acrylonitrile for carbon fiber manufacture

The quest for a sustainable source of acrylonitrile for carbon fiber manufacture has made the leap from the lab to the market.

Read More

Read Next

Marine

Developing bonded composite repair for ships, offshore units

Bureau Veritas and industry partners issue guidelines and pave the way for certification via StrengthBond Offshore project.

Read More
Compression Molding

VIDEO: High-volume processing for fiberglass components

Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.

Read More
Carbon Fibers

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Composites One