Ready-to-Ship Composites
Published

ATL Composites contributes to concrete pillar remediation project

Six new support pillars incorporate Hexcel ZU300 UD carbon fiber and ATL’s Technirez R2517 epoxy resin with H2431 slow hardener that will protect against storm water issues.

Share

Composite-based pillars

Photo Credit: ATL Composites

It was reported on Nov. 18 that ATL Composites (Molendinar, Australia) was recently involved in a remediation project on a unit block in Coffs Harbour, Australia, with Binet Constructions (Quebec, Canada) and engineers. The project’s goal, to repair and reinforce the 40-year-old concrete pillars supporting the entire building, used high-performance carbon fiber composites to get the job done. A majority of them were suffering from concrete cancer, a result of exposure to the sea air and wear and tear over many decades.

Binet Constructions has a 50-year history in the Coffs region; however, using composites as the repair material was still relatively new to the company. “We hadn’t used carbon fiber on construction projects before, but it was specified by the engineer and we believed it would be perfect for the job,” says Murray Binet, the son of founder, Greg Binet. The Binets had previously worked with ATL epoxies, E- fiberglass reinforcements and DuFLEX composite panels in the construction of an 11-meter Schionning catamaran.

Binet Constructions first sent the specs for the resin and carbon to ATL’s Anthony Basilone, who suggested ZU300, a high-performance unidirectional (UD) carbon fiber material manufactured by Hexcel Corp. (Stamford, Conn., U.S.) and ATL’s Technirez R2517 epoxy resin with H2431 slow hardener to laminate the reinforcement.

“We see much more potential applications for this product and technique, specifically the remediation of bridges, buildings and other construction projects.”

Techniglue R60 structural adhesive thickened with WEST SYSTEM 413 Microfibre Blend was also used as a surface filler on the patched concrete, to provide a flat surface for the carbon to bond to. Synthetic peel-ply was used to wrap the carbon reinforcement in order to provide a textured surface that would reduce the amount of sanding required prior to the application of the final finish.

The apartment block comprised 16 units in a four-story building. There were six columns in the car park in the basement of the building that required repairs. Each pillar supported 60 tonnes.

According to Murray Binet, the most challenging part of the work was “creating the new support structure in a 40-year-old building. The building had long-term storm water issues as well.”

Despite this, ATL’s carbon fiber reinforcements and Technirez structural epoxy were said to be ideal for the job. “They’re lightweight, easy to work with, watertight when glued on and strong,” Binet adds. “In fact, the combination of the ATL products exceeded the engineer’s specifications.”

ATL’s Anthony Basilone explains, “The engineers decided on a specification where the original pylons were to be ground back to good material, patched with a mortar mix, wrapped in epoxy/carbon and then an additional pylon added to increase the overall strength. The carbon wrapping was used to ensure the old pylon would last as long as the new ones.”

The benefit of this procedure, rather than removing the pillars and replacing them was that residents didn’t have to move out while the building underwent major construction work.

“Removing the pylons, reinforcing the foundations with lintels would have been a huge undertaking, resulting in relocation of residents, added expense and a loss of rental income for owners. It was certainly more cost-effective, quicker and less hassle all round,” says Murray.

“The carbon fiber product from ATL was excellent,” he adds. “We see much more potential applications for this product and technique, specifically the remediation of bridges, buildings and other construction projects.”

BARRDAY PREPREG
Toray public database prepreg materials
Harper International Carbon Fiber
Composites One
Custom Quantity Composite Repair Materials
HEATCON Composite Systems
Alpha’s Premier ESR®
ColorForm multi-component injection
Airtech
NewStar Adhesives - Nautical Adhesives
CompositesWorld
recycle carbon fiber

Related Content

ATL/AFP

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More
Hydrogen Storage

Cryo-compressed hydrogen, the best solution for storage and refueling stations?

Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Epoxies

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More

Read Next

Infrastructure

WEAV3D composite material approved for infrastructure reinforcement applications

Durable, strong and resistant to corrosion, the thermoplastic-based lattice material is suitable for use in Oldcastle Infrastructure’s polymer concrete and sheet molding compound (SMC) composite products. 

Read More
Focus on Design

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Finishing & Fastening

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Ready-to-Ship Composites