Composites One
Published

Element Materials Technology invests in hydrogen capabilities

Backed by recently acquired Filton Systems’ digital engineering and aerospace capabilities and composite tanks testing, and NTS Laboratories’ H2 facility, Element adds new equipment, expands team for H2 advancement.

Share

Photo credit: Element Materials Technology

Element Materials Technology (London, U.K.), a testing, inspection and certification (TIC) services provider, has completed the first part of its $10 million investment into new hydrogen state-of-the-art testing equipment and expanding its dedicated global hydrogen team, in an effort to meet increasing demand from its customers who are transitioning to cleaner energy solutions and using hydrogen throughout various product lifecycles and systems.

These efforts complement Element’s existing services, encompassing areas such as digital modeling and simulation, support for carbon capture usage and storage (CCUS) projects, the development of aerospace and transportation fuel tanks and systems, and the establishment of pipeline and storage facilities for the energy sector.

To bolster its capabilities, Element has developed specialized static and dynamic fracture mechanics equipment for its laboratories in the U.K. and Europe. This equipment enables hydrogen testing at pressures of up to 100 barg, frequencies below 1 hertz and at cryogenic temperatures of up to -269ºC, in a variety of test frame configurations. The equipment will be used to assess hydrogen infrastructure and storage systems under different in-situ temperatures and pressures.

At Element’s Malvern, U.K. facility, 11 chambers conduct electromagnetic compatibility (EMC) testing to ensure the seamless operation of complex electronic components in modern vehicles. Recently, Element has upgraded its large equipment chamber with safety systems to test hydrogen-fueled vehicles and other equipment using hydrogen as fuel, catering to customers entering this emerging market.

Element’s recent acquisition of Filton Systems Engineering (FSE, Bristol, U.K.), an aerospace engineering and testing services business, further enhances and complements these hydrogen-related offerings. Filton, with its team of 50 experts, brings extensive expertise in gaseous and liquid hydrogen, supported by a dedicated facility in Kemble, U.K., featuring an in-house-designed liquefaction plant. FSE also has experience developing and testing Type III and IV tanks. This complements the acquisition of NTS Laboratories in the U.S. last year, which has a dedicated hydrogen facility in San Bernardino, Calif., U.S. that was previously used to support the space market with fluid flows and liquid hydrogen.

A dedicated hydrogen team has been established at Element, comprising experts in fuel cells, infrastructure, electrolyzers, cryogenics, process and functional safety. Working across a variety of market sectors for hydrogen, they are situated to coordinate services across Element’s laboratories worldwide. This team, in conjunction with the skills and capabilities of FSE, forms a wealth of knowledge and experience that can be applied to customer projects related to hydrogen, carbon capture and infrastructure transition — across the full value chain and product life cycles.

“As hydrogen takes center stage in the global clean energy market, the materials and infrastructure involved present new challenges and contexts for use,” Mark Eldridge, director of hydrogen at Element, says. “With our deep expertise in materials science, corrosion, coatings and electrochemistry, we offer state-of-the-art testing, certification and consulting services for various aspects of hydrogen-related technologies. Coupled with our digital engineering expertise, these services expedite time-to-market, crucial in achieving stringent net-zero targets.”

Safety remains a paramount concern at Element, with a focus on advancing safe, hydrogen-related technologies within this team. This commitment is also evident across the wider Element service offering in physical testing, including engineering critical assessments covering welds, corrosion, coatings, electrochemistry, fracture mechanics, fatigue testing, permeation analysis and materials validation. Hydrogen digital engineering, including modeling, simulation and computational fluid dynamics, supports these testing efforts.

Vacuum and Controlled Atmosphere furnaces
Composites One
Wickert Hydraulic Presses
Fire Retardant Epoxies
Park Aerospace Corp.
Ad showing Janicki CNC Mill machining part in tool
Nanoparticles filled epoxy adhesives
Keyland Polymer Webinar Coatings on Composite & AM
Alpha’s Premier ESR®
CompositesWorld
IRIS Ai-enabled Camera
HEATCON Composite Systems

Related Content

Hexagon Purus opens new U.S. facility to manufacture composite hydrogen tanks

CW attends the opening of Westminster, Maryland, site and shares the company’s history, vision and leading role in H2 storage systems.

Read More

Composites end markets: Automotive (2024)

Recent trends in automotive composites include new materials and developments for battery electric vehicles, hydrogen fuel cell technologies, and recycled and bio-based materials.

Read More
Aerospace

ZeroAvia advances to certify ZA600 in 2025, launch ZA2000 with liquid hydrogen in 2027

Lightweight composite tanks are key to ZeroAvia’s vision for H2 aircraft to rival range and utility of jet fuel aviation.

Read More
Glass Fibers

Mikrosam, H2Storage collaborate on 300+-liter Type IV hydrogen tanks

Automated filament winding cell achieving wind speeds of 6 meters/second improves production performance, shortens curing cycle for serial production of 700-bar Type IV tanks.  

Read More

Read Next

Hydrogen Storage

Report addresses advancements, challenges in hydrogen value chain

IDTechEx gives an overview of the solutions that currently exist for hydrogen storage and distribution, and how these two components are vital to ensuring the full potential of this rapidly growing sector.

Read More
Aerospace

NCC composite cryogenic tanks successfully tested with LH2

Thirty-liter single-piece and split-piece tank constructions underwent various pressures and test cycles while maintaining full integrity. End boss design testing is underway.

Read More
Hydrogen Storage

Forvia begins Type IV hydrogen tank rollout from mass production plant

From tank manufacturing to complete storage systems, the automotive technology company cites a mid-term capacity of 100,000 tanks per year.

Read More
Composites One