Composites Training
Published

London Underground explores composite materials

Mind the gap! The iconic London subway system develops lighter doors made with composites, in partnership with the National Composites Centre, for more efficient transport.

Share

London Underground (LU, London, U.K.) is exploring ways to reduce delays for customers by trialling lighter Tube train doors using award-winning innovative aerospace technology. LU's Innovation Team has led a group of industry experts to explore using composites previously only used in aerospace to construct a commercially viable, lightweight train door.

This award-winning project is in its final stage with the prototype door currently undergoing final rigorous structural testing. This will ensure that the design meets the strictest regulations, ensuring safety for Tube customers.

The group says the benefits of these innovative lighter doors are far-reaching. Customers would benefit from reduced journey times and reduced waiting times on platforms, a saving of 530,000 passenger hours a year. Furthermore, reduction in mechanical stresses in other parts of the door system would reduce the frequency of door-related failures, resulting in fewer delays. The total weight saving of using the lighter composite material for doors across a Central line train would reportedly be 1.25 metric tonnes, with huge benefits on train energy consumption and track wear.

David Waboso, London Underground’s Capital Programmes Director, says “This pioneering project is about our engineers and partners harnessing the latest in technological innovation in order to improve the journeys of our millions of customers. By using this aerospace technology we have the potential to reduce delays and crowding for customers at a time when more and more people are using the Tube. At the same time we can also save millions of pounds to be reinvested in our services and also reduce our impact on the environment.”

Jeff Ive, engineering capability lead at the U.K.'s National Composites Centre and technical lead on the project, says “This project has taken full advantage of the NCC remit to cross-pollinate technologies from different sectors. Using materials often used in an aerospace application and processing them in a novel manner we have been able to deliver an end product that has the potential to improve a public service for generations to come. We have drawn on the experience and insight of engineers, technicians and supply chains across numerous sectors to deliver this challenging project. It is a pleasure to receive acknowledgement from the rail industry, whom we look forward to working with more in future. There is a good opportunity, especially in the field of environmental advance, due to the potential around the recyclability of this product.”

For London Underground the application of these innovative new doors on the Central line alone would mean cost savings of over £5 million a year, energy savings of £100,000 a year; passenger journey time savings worth £4.7m a year; and reduction in track wear, saving £400,000 a year.

In the long term this research will be a push towards future lighter trains, which will reduce operating and maintenance costs. The research also offers the potential to see longer doors installed on existing Tube trains, which would reduce boarding and alighting times. For customers this would mean the possibility of increasing the number of trains running on the Tube.

The project won a Rail Industry Innovation Award in the ‘Environment’ category and has been shortlisted for the prestigious Stephenson Innovation Award with the winner to be announced later this year.

expanded metal foils and polymers
HyperX Software for Composite Structural Analysis
De-Comp Composite Materials and Supplies
Composites One
Epoxy adhesives and coatings
Wickert Hydraulic Presses
Compression Molding
Park Aerospace Corp.
Composites Training
Ad showing Janicki CNC Mill machining part in tool
CAMX 2024
Composites product design

Related Content

Aerospace

LIST opens innovation center focusing on sustainable composite materials

The Sustainable Composite Materials and Manufacturing Innovation Centre (SCMM) will be supported by major players in rail, aerospace, automotive and space to transition sustainable composites research to commercialization.  

Read More
Hydrogen Storage

Plastic Omnium supports development of Safra Hycity hydrogen-powered buses

Passenger transportation retrofit specialist will receive Plastic Omnium’s Type IV high-pressure hydrogen vessels, fuel cell systems, and technical and product launch support.  

Read More
Thermoplastics

Composite sidewall cover expands options for fire-safe rail components

R&D project by CG Rail explores use of carbon fiber-reinforced thermoplastics and recycled manufacturing scrap to meet fire safety, weight and volume targets.

Read More
Pressure Vessels

Longtime partner New Flyer selects Hexagon Purus to outfit hydrogen transit bus

Hexagon Purus will continue to supply Type IV hydrogen tanks for the Xcelsior Charge H2 fuel cell electric bus, the tanks of which will be produced out of Hexagon’s new Maryland facility.  

Read More

Read Next

Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Ketones

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Composites Training