Composites One
Published

MIT researchers reveal how bonded joints fracture and fail

Moisture reportedly plays crucial role.

Share

Materials that are bonded together with epoxy and other adhesives are used everywhere in modern life — from crowns on teeth to modern composites used in construction. Yet it has been very difficult to study how these bonds actually fracture and fail, and thus, how to make them more failure-resistant.

Researchers at MIT (Cambridge, Mass.) have developed a way to study bonding failures directly, revealing the crucial role that moisture plays. Their findings are published in the journal Proceedings of the National Academy of Science in a paper by MIT professors of civil and environmental engineering Oral Buyukozturk and Markus Buehler; research associate Kurt Broderick of MIT’s Microsystems Technology Laboratories; and doctoral student Denvid Lau.

 “The bonding problem is . . . encountered in many disciplines, especially in medicine and dentistry,” says Buyukozturk, whose research has focused on infrastructure, where such problems are also of great importance. “The interface between a base material and epoxy, for example, really controls the properties. If the interface is weak, you lose the entire system.”

Besides dental implants and joint replacements, such bonding is also critical in construction materials such as fiber-reinforced polymers and reinforced concrete. But while such materials are widespread, understanding how they fail is not simple.

There are standard test methods for evaluating the strength of materials and how they may fail structurally, but bonded surfaces are more difficult to model. “When we are concerned with deterioration of this interface when it is degraded by moisture, classical methods can’t handle that,” Buyukozturk says. “The way to approach it is to look at the molecular level.”

Buyukozturk explains that when such systems are exposed to moisture, “it initiates new molecules at the interface and that interferes with the bonding mechanism. How do you assess how weak the interface becomes when it is affected? We came up with an innovative method to assess the interface weakening as a result of exposure to environmental effects.”

The team used a combination of molecular simulations and laboratory tests in its assessment. The computer modeling was based on fundamental principles of molecular interactions, not on empirical data, Buyukozturk says. In the laboratory tests, Buyukozturk and his colleagues controlled the residual stresses in a metal layer that was bonded and then forcibly removed. “We validated the method, and showed that moisture has a degrading effect,” he says.

MIT believes the findings could lead to exploration of new ways to prevent moisture from reaching into the bonded layer, perhaps using better sealants. “I think this is going to be an important step toward assessment of the bonding, and enable us to design more durable composites,” Buyukozturk says. “It gives a quantitative knowledge of the interface” — for example, predicting that under specific conditions, a given bonded material will lose 30 percent of its strength.”

Interface problems are universal, Buyukozturk says, occurring in many areas besides biomedicine and construction. “They occur in mechanical devices, in aircraft, electrical equipment, in the packaging of electronic components,” he says. “We feel this will have very broad applications.”

Bonded composite materials are beginning to be widely used in airplane manufacturing; often these composites are then bonded to traditional materials, like aluminum. Others in the field have hailed this approach — which combines theory, experiments, and simulations at the nanoscale level — as outstanding research that will help overcome shortcomings in understanding failure at the bonded interface of dissimilar materials. These experts note these interfaces are ubiquitous in composites, thin films, and many other systems.

Composites One
pro-set epoxy laminate infusion tool assembly
Janicki employees laying up a carbon fiber part
Park Aerospace Corp.
Compression Molding
CAMX 2024
NewStar Adhesives - Nautical Adhesives
Advert for lightweight carrier veils used in aero
Release agents and process chemical specialties
CompositesWorld
Composites product design
Carbon Fiber 2024

Related Content

Work In Progress

Automated robotic NDT enhances capabilities for composites

Kineco Kaman Composites India uses a bespoke Fill Accubot ultrasonic testing system to boost inspection efficiency and productivity.

Read More

3D-printed CFRP tools for serial production of composite landing flaps

GKN Aerospace Munich and CEAD develop printed tooling with short and continuous fiber that reduces cost and increases sustainability for composites production.

Read More

Metal AM advances in composite tooling, Part 1

Multiple metal additive technologies are gaining market acceptance and interest for composite tooling used in processes ranging from short-fiber injection to autoclave-cure prepreg.

Read More
Glass Fibers

Jeep all-composite roof receivers achieve steel performance at low mass

Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.

Read More

Read Next

NDI

Certification of bonded composite primary structures

OEMs develop technology to quantify uncertainty in pursuit of the no-bolt bondline.

Read More
Aerospace

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Plant Tours

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Composites One