Published

Quartz, CMC and ceramic continuous filament offerings

CAMX 2024: Saint-Gobain Quartz, now Saint-Gobain Advanced Ceramic Composites, diversifies its portfolio of high-temperature materials development for aerospace, connectivity and industrial markets.  

Share

Source | Saint-Gobain ACC

As of April 2023, Saint-Gobain Quartz (Saint-Pierre-lès-Nemours, France) evolved into a new business, Saint-Gobain Advanced Ceramic Composites (ACC). The goal of this new name is to reflect the company’s ambitions to diversify its solutions and expertise to grow in high-potential markets. Saint-Gobain ACC is implementing a growth strategy focused on quartz, ceramic continuous filaments and ceramic matrix composites (CMC) activities for aerospace, connectivity and industrial markets.

The company’s historical quartz activities will remain a strong focus in its roadmap. Saint-Gobain ACC says it will continue to invest in the development and production of quartz filaments for radomes, electronics, and electrical and thermal insulation in particular.

Quartzel(R) products include 9- or 14-µm-diameter homogeneous, non-porous, continuous, amorphous, ultra-pure silica glass with a SiO2 content >99.95%. Quartzel(R) is available in yarns and rovings processed to varying levels of twist and ply ranging from 17-1,600 tex. This includes chopped fibers and nonwoven textile substrates including wool, felts, needle punch felts veils and powders.

Saint-Gobain ACC’s ceramic continuous filaments activity focuses on a portfolio of solutions based on continuous filaments made of alumina and mullite, dedicated to extreme temperature applications. These filaments are used, for instance, in composites designed to lighten aircraft structures while improving engine efficiency, therefore contributing to a reduced CO2 footprint.

In addition to its historical facilities in Nemours, France, and Louisville, Kentucky, Saint-Gobain ACC welcomes Courtenay, France, into its industrial network for the upcoming production of ceramic continuous filaments.

Related Content

Thermoplastic Composites
fiberglass reinforcement solutions
Customized material science for multiple industries

Related Content

Black Hawk program receives improved turbine engine with CMC

GE Aerospace T901 flight test engines will replace GE T700 for the UH-60M Black Hawk helicopter, using additive manufacturing and ceramic matrix composites (CMC) for 1,000 shaft horsepower increase.

Read More
Space

ORNL, Sierra Space create novel C/SiC TPS for reusable space vehicles

CMC tiles will be used on the Sierra Space DC100 Dream Chaser spaceplane carrying critical supplies and science experiments to and from NASA’s ISS.

Read More
Aerospace

MATECH C/ZrOC composite is deployed in hypersonic aeroshells

Ultra high-temperature insulating CMC targets hypersonics, space heat shields and other demanding applications, tested up to 2760°C under extreme stagnation pressures.

Read More

Bio-based SiC ceramics from wood polymer composites

Austrian research institute Wood K plus makes 95% silicon carbide ceramics more sustainable (>85% bio/recycled content), enables 3D shapes via extrusion, injection molding and 3D printing.

Read More

Read Next

CAMX

Precision blades support industrial fiber cutting needs

CAMX 2024: Machine knives and industrial razor blades supplier American Cutting Edge offers composites manufacturers staple and custom cutting options.

Read More
Hi-Temp Resins

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Carbon Fibers

Developing bonded composite repair for ships, offshore units

Bureau Veritas and industry partners issue guidelines and pave the way for certification via StrengthBond Offshore project.

Read More