Carbon Fiber 2024
Published

Bio-based composite bridge in The Netherlands

This summer, FiberCore Europe joined forces with TU Delft and Schiphol Logistics Park, and other firms and local agencies, on the design and construction of an ecologically sustainable composite footbridge made with bio-based materials.

Share

This summer, FiberCore Europe (Rotterdam, The Netherlands) joined forces with TU Delft (Delft, The Netherlands) and Schiphol Logistics Park (Schiphol, The Netherlands), and other firms and local agencies, on the design and construction of an ecologically sustainable composite footbridge made with bio-based materials. The bridge is located at the logistics business park in the Dutch city of Rozenburg.

For his thesis at the Bridge Design Group of TU Delft, architect Rafail Gkaidatzis researched bridge designs incorporating the highest proportion of bio-based materials possible. He calls his resultant design “bio-basalt balsa,” or B3. The 15m-long, 2m-wide bridge spans the waterway between the Ringdijkpark and the Naritaweg at Schiphol Logistics Park and is publicly accessible by employees of the business park and residents of the adjacent Aalsmeerderdijk neighborhood.

The bridge elements combine basalt fibers from Mafic (Kells, Ireland) and a bio-based polyester resin, based on glycerine-derived glycol. The deck is cored with Baltek balsa supplied by Airex AG, a division of 3A Composites (Sins, Switzerland). Advantages of the composite construction compared to traditional materials are its high strength, low energy requirement during construction, low maintenance requirement and long service life, with no rot or corrosion. As a result, the bridge material is expected to last for at least 100 years.

FiberCore Europe says that the combination of materials, never before used in bridge construction, makes the project unique. It’s a step toward making civil construction more sustainable and contributes to the realization of a sustainable society.

The sustainable bridge is the result of the excellent cooperation of all parties involved. Not only technical challenges were overcome, but directors, funders and the client also showed the courage to realize this innovation in deviation from standard procedures.

Related Content

  • Composite buildings go monocoque

    Superior protection from the elements plus fast, affordable installation and maintenance have quickly made Orenco Composites’ DuraFiber buildings an attractive choice for water and wastewater, communications, transportation and power industry outbuildings.

  • Gatorbar, NEG, ExxonMobil join forces for composite rebar

    ExxonMobil’s Materia Proxima polyolefin thermoset resin systems and glass fiber from NEG-US is used to produce GatorBar, an industry-leading, glass fiber-reinforced composite rebar (GFRP).

  • Materials & Processes: Resin matrices for composites

    The matrix binds the fiber reinforcement, gives the composite component its shape and determines its surface quality. A composite matrix may be a polymer, ceramic, metal or carbon. Here’s a guide to selection.

Release agents and process chemical specialties
CompositesWorld
Composites product design
Airtech
NewStar Adhesives - Nautical Adhesives
CompositesWorld
HEATCON Composite Systems
Carbon Fiber 2024
CompositesWorld