Ready-to-Ship Composites
Published

Carbon fiber pickup box: A GM redux?

Didn’t GM release a truck with a composite pickup box years ago? The Pro-Tec box was molded in the same Huntington factory as the new CarbonPro version. So, what sets the new pickup box apart?

Share

The 18th Society of Plastics Engineers Automotive Composites Conference and Exhibition (SPE ACCE) was held in Novi, MI, US, in early September. This year’s event was a testament to the continued high level of interest in composites for automotive applications, drawing a record 1,100 registered attendees and nearly 100 technical papers over the three days. More than 75 of the industry’s leading companies had exhibits, and the show floor was populated with many innovative vehicle applications.

Among these included advances in structural thermoplastic overmolding, combining continuous tapes or fabric prepregs with short fiber-reinforced compounds to provide edge details and complex features. Also on display was a hybrid thermoplastic (long glass inner panel with low-CTE unreinforced outer panel) tailgate for the 2019 Jeep Cherokee, carbon fiber SMC wheels for urban mobility vehicles and a phenolic-based sheet molding compound (SMC) for a fire-resistant battery enclosure demonstrator. Ford and Warwick Manufacturing Group in the UK showed a front suspension component combining steel, carbon fiber/epoxy prepreg and carbon fiber/vinyl ester SMC molded in a single process.

One innovation that attracted considerable attention was the CarbonPro composite pickup box, slated for production starting in mid-2019 for the GMC 1500 Sierra Denali full-size truck. The display was augmented by a morning keynote speech from Mark Voss, engineering group manager of body structures, advanced composites and pickup boxes, at General Motors. I have known Mark since 2001, when he was new to composites at GM and I was serving as the project manager for the Tier 1 supplier of the 2004 Corvette Le Mans Commemorative Edition carbon fiber hood, GM’s first Class A carbon fiber panel on a production vehicle. This component led to deployment of carbon fiber on future generations of the Corvette platform. Mark and I co-authored a paper for the 2004 SPE ACCE on the design and manufacturing process for the hood.

Initially unveiled earlier in 2018, the CarbonPro box is GM’s first foray into using carbon fiber outside Corvette or high-performance versions of the Cadillac line. Up to this point, all previous carbon fiber components have been made from thermoset epoxy prepregs. The truck box changes that paradigm by being thermoplastic-intensive, employing a 35% chopped carbon fiber-filled, UV-resistant polyamide 6 resin for the box floor, sides and end panels. GM has worked closely with material supplier Teijin since 2011 to develop the Sereebo manufacturing technology used to make the structure, resulting in a box that is 28 kg lighter than the equivalent all-steel version. GM claims that testing shows it to be more durable than steel or aluminum, or any fiberglass composite box on the market. Molding of the thermoplastic composite mat is principally via compression, similar to SMC. The box is truly multi-material; in addition to the thermoplastic box interior, other supporting components have been produced from recycled in-plant offal (thermoplastic), thermoset SMC and steel. The outer panels of the box remain in steel and are painted the body color. Molding of the box components and assembly will occur at Teijin subsidiary Continental Structural Plastics’ facility in Huntington, IN, US, then shipped to GM’s nearby Fort Wayne, IN, assembly plant.

Wait. Why does this story have a familiar ring? Didn’t GM release a truck with a composite pickup box years ago? Indeed, it did. Called the Pro-Tec box and molded in the same Huntington factory as the new CarbonPro version, it was offered as a customer option on certain versions of the Chevrolet Silverado and GMC Sierra pickups starting in 2001. It was one of the largest parts produced using chopped fiberglass preforms and polyurethane resin, employing the structural reaction injection molding (SRIM) process. I visited the Huntington factory and wrote a feature story about the box in the April 2002 edition of Composites Technology. In production for only two years, only an estimated 10,000 boxes were produced, less than 10% of the anticipated volume. While a technical success, the box was considered a commercial failure, attributed partly to its only being available in short-bed version, and partly to a lack of promotion by GM to incentivize dealers to sell the $850 upgrade instead of a steel box with a thermoformed bedliner.

Is CarbonPro destined for the same fate? I hope not, and so should the composites industry. Slated for initial production of 15,000 per year and aimed at a specific high-end target market, GM is making sure to walk before it runs. Even at relatively low volumes, the application will consume sizable quantities of carbon fiber. Improvements in materials and manufacturing costs could see growth of this and other applications.

Adhesives for Composite Materials
Composites One
Custom Quantity Composite Repair Materials
Harper International Carbon Fiber
Toray Advanced Composites
BARRDAY PREPREG
Airtech
MITO® Material Solutions
CAMX 2024
Carbon Fiber 2024
HEATCON Composite Systems
Composites product design

Related Content

Prepregs

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More

TU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage

Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.

Read More
Glass Fibers

Jeep all-composite roof receivers achieve steel performance at low mass

Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.

Read More
Thermoplastics

Demonstrating composite LH2 tanks for commercial aircraft

Toray Advanced Composites and NLR discuss the Netherlands consortium and its 4-year project to build demonstrator liquid hydrogen tanks, focusing on thermoset and thermoplastic composites.

Read More

Read Next

Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Additive Manufacturing

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Defense

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Ready-to-Ship Composites