Composites One
Published

HPC goes to SPE ACCE

CT Editor-in-chief Jeff Sloan fields initial reports from two CT staffers about the recent — and growing — Society of Plastics Engineers' Automotive Composites Conference and Exhibition.

Share

This year, the Society of Plastics Engineer’s Automotive Composite Conference & Exhibition (ACCE) was relocated from the outgrown Michigan State University Management Education Center (Troy, Mich.) to the Suburban Collection Showcase in nearby Novi. A good thing. ACCE exhibitors doubled, and last year’s record 630 attendees paled compared to the 897 registered this year — one indication that auto OEMs could be ready for pervasive use of composites. CT staffers went looking for answers to the question I asked in my August editorial: Are we ready? The best answer may be, We know what we need to do to be ready.

Managing editor Mike Musselman says many at ACCE considered that very question. ACCE co-chair Ed Bernardin (Siemens PLM Software) said the auto industry’s characteristic high rate of change is a key hurdle. He and Roger Assaker (e-Xstream engineering) contended that virtual testing of composites is a huge need in the auto world. Such tools are well developed for chopped-fiber compounds, but there is a pressing need for software that can simulate failure of continuous-fiber composites. Reliable tools are emerging and will, says Assaker, take a two-year, multimillion dollar testing program and compress it into a long work day!

High-pressure RTM (HP-RTM), the subject of multiple research reports at last year’s ACCE, is now commercial: Shuler SMG GmbH’s vacuum-assisted HP-RTM system mints the BMW i3 passenger cell and the BMW M3 roof. Quickstep Technologies proposes to do similar duty at low pressures (and with less expensive equipment), with the aid of fluid heating and its new Resin Spray Technology (RST). And Volkswagen AG’s Hendrik Mainka said his work with Oak Ridge National Lab shows that lignin precursor and the process of oxidation and pyrolization that converts it to carbon fiber spells cost savings of 40 percent. Unfortunately, unresolved issues, among them the seasonal variation in lignin (as a plant product), mean commercialization could be a decade away.

CT senior technical editor Sara Black points out that ACCE’s “Aluminum & Composite — Compete or Collaborate?” panelists included aluminum industry representatives. All the panelists agreed that composites can 1) displace steel and aluminum in appropriate applications, and 2) make invaluable contributions to lightweighting. But the discussion revealed that auto OEMs will remain resistant until they hear a valid value proposition. If a composites solution for automotive can make a part lighter, for less money, no problem, say the OEMs. Such solutions, so far, are scarce — a notable exception is the semi-convertible sunroof frame for the Citroen DS3 Cabrio, molded from a modified glass-reinforced styrene maleic anhydride (SMA) resin. The part offers significant material cost savings, part integration (seven parts combined into one) and a 40 percent weight reduction. That aside, Kaiser Aluminum’s Doug Richman made the point that without a solid business case, it’s impossible to make the technology case. Panelist Jai Venkatesan of Dow Chemical Co., pointed out in his keynote address that adoption of composites is a “high-risk, high-reward” and disruptive step, and it’ll take time. Yet, he believes that we can use lessons learned from veterans of aerospace composites and automotive aluminum, apply software tools more widely, and — in collaboration — eventually ensure that composites become an entrenched material choice.

Harper International Carbon Fiber
BARRDAY PREPREG
Composites One
Custom Quantity Composite Repair Materials
Adhesives for Composite Materials
Toray Advanced Composites
CompositesWorld
Carbon Fiber 2024

Related Content

Curing

SmartValves offer improvements over traditional vacuum bag ports

Developed to resolve tilting and close-off issues, SmartValves eliminate cutting through vacuum bags while offering reduced process time and maintenance.

Read More
Out of Autoclave

Trelleborg launches low-friction thermoplastic composite bearing

The HiMod Advanced Composite Bearing Plus is a dual-layer bearing with a low-friction PEEK liner that doubles as an impermeable sealing surface, in addition to 50% less sliding friction, increased wear performance.  

Read More

The state of recycled carbon fiber

As the need for carbon fiber rises, can recycling fill the gap?

Read More
RTM

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More

Read Next

Additive Manufacturing

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Plant Tours

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Automotive

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Ready-to-Ship Composites