Carbon Fiber 2024
Published

Is the market ready for another widebody aircraft?

This past week, the Airshow China 2016 event was held, from November 1 – 6 in Zhuhai, China. A notable outcome from the show, reported in several media outlets, was that Russia’s United Aircraft Corp. (UAC) and the Commercial Aircraft Corporation of China (COMAC) have advanced their plans for their collaborative twin-aisle widebody aircraft.

Share

This photo from Ooyuz Web site shows the model of a UAC/COMAC joint venture widebody aircraft, at the Airshow China 2016 in Zhuhai.

This past week, the Airshow China 2016 event was held, from November 1 – 6 in Zhuhai, China. A notable outcome from the show, reported in several media outlets, was that Russia’s United Aircraft Corp. (UAC) and the Commercial Aircraft Corporation of China (COMAC) have advanced their plans for their collaborative twin-aisle widebody aircraft, so far referred to as Long-Range Wide-Body Commercial Aircraft (LRWBCA). A mockup of the new aircraft was on display at the show, showing 280 seats and 9-abreast economy seating.

An agreement was initially signed in 2012 between UAC and COMAC to study the feasibility of a widebody to compete with Boeing and Airbus. At the China air show event last week, COMAC released a document saying that it and UAC have progressed to a joint venture, to be based in Shanghai, which will start operations this year, presumably on initial designs and supplier agreements, says a Reuters market news story dated Nov. 1 by Brenda Goh and Kenneth Maxwell.

According to a Nov. 4 Aviation Week & Space Technology article by Bradley Perrett and Maxim Pyadushkin, UAC will build the aircraft’s composite wing, using the technology developed by AeroComposit (Moscow, Russia) for the Irkut MS-21 single-aisle commercial transport (see our story on that composite wing technology involving dry layup and infusion here: http://www.compositesworld.com/articles/resin-infused-ms-21-wings-and-wingbox). COMAC will make the fuselage, using both aluminum and composite, with final assembly to occur in Shanghai, according to the article.  Power will be provided by Rolls-Royce or General Electric engines, with a possible Russian engine to be developed by 2030. Projected entry into service will be 2027, say the authors.

The joint venture is apparently focused on replacing the Airbus 330, as that aircraft ages over the next decade, and the Perrett and Pyadushkin article says that UAC and COMAC are claiming a 10% advantage in operating costs over competing models. Recent acquisitions of aircraft manufacturing technology and equipment companies by Chinese entities, including Brotje Automation (Rastede, Germany), Kuka Aerospace (Clinton Township, MI, US) and Aritex (Barcelona, Spain), indicate that COMAC will likely have access to experienced worldwide suppliers for high-tech assembly.

So will a new Chinese/Russian market entrant succeed, especially one with a composites-intensive design? Only time will tell as the new aircraft’s design progresses. Is the demand there for a new widebody aircraft in the current market? Another Aviation Week article dated Nov. 4 by Joe Anselmo cites a maintenance, repair and overhaul (MRO) market survey that shows weak demand for current wide-body aircraft (e.g., Boeing 777, 747, Airbus A380), with no sign of improvement. On the other hand, Airbus’ 2016 – 2035 Global Market Forecast report claims that China will need nearly 6,000 new passenger aircraft and freighters during that time period. The forecast projects 4,230 single aisle planes and 1,740 widebody planes for China, to meet what Airbus says will be the fastest-growing air passenger market, well above the rest of the world. 

Register now for the ITHEC 2024 conference!
Wabash
Wickert Hydraulic Presses
Industrial CNC Routers
Composites product design
Airtech
Carbon Fiber 2024
CompositesWorld

Related Content

Automotive

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More
Ketones

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More
Epoxies

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More
Fabrics/Preforms

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More

Read Next

Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Aerospace

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Fastening / Finishing

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Release agents and process chemical specialties